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Introduction. The results we give here only begin to answer the follow­
ing general problems: Let AT be a hermitian symmetric domain, T a group 
acting holomorphically and discontinuously, and U = T\X the quotient. Then, 
by Kodaira if U is compact and smooth, or, by Baily-Borel if just {/has 
finite volume (and T arithmetic), U is algebraic. One can ask for all ways of 
algebracizing U over R, for each of the number of connected components of 
£/(R), and the type of each component as, say, a real analytic space. For the 
smooth R-algebraic varieties U = T\X9 each component of U(R) is a quotient 
of the form U' = i A x ' of a globally symmetric space I ' C I b y a subgroup 
r ' c r . To determine which X' and r'-actions occur is our goal. 

Generalities. Let X be as above, o: X —> X an antiholomorphic in­
volution, and X' the set of fixed points of a. (We consider T only virtually 
now.) 

PROPOSITION, (a) o is an isometry of the Bergmann metric. 

(b) X' is a nonempty connected totally geodesic subsymmetric space of 

X; dimR X' = dimc X. 

(c) X' is holomorphically dense: a holomorphic or antiholomorphic 

automorphism of X is determined by its restriction to X'. 

One can construct, at least for X without "exceptional" factors, (for 
example via the Lie algebra of the isometry group) involutions as above. 
Choose o0 as "standard" and xQ a fixed point of a0 . Let Gh be the group of 
holomorphic automorphisms of X, Kh the isotropy group at x0. Then Gal = 
{1, a0} acts by conjugation on Gh and Kh. Moreover if C denotes the set of 
all antiholomorphic involutions of X, and C0 the subset fixing x 0 , then Gh 

acts by conjugation on C and Kh preserves C0. The quotients C/Gh and 
C0/K

h are the Gh- and A^-conjugacy classes of C and C0. These can be 
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identified with the cohomology sets Hl(Gal, Gh) and ^(Gal, Kh). 

PROPOSITION. The canonical map /^(Gal, Kh) - * /^(Gal, Gh) induced 
by the inclusion of Kh in Gh is a bijection. 

One wishes to compute i/^Gal, Gh), and from it the isometry types of 
real forms X' C X of antiholomorphic involutions. The standard maps o0 can 
be chosen so that the crucial fact becomes: 

LEMMA. /^(Gal, U(n)/{± 1}) with action = complex conjugation is triv­
ial for n odd, and for n even has two elements represented by the identity 
matrix and / = (_?! £)• 

Results. Since all of our X and X' are globally symmetric of purely non-
compact type, we can (if we are interested only in isometry types) refer to 
them by the Lie algebra of the isometry group. Denote by c(X), card(/f1(Gal, Gh))9 

and call it the "number of complex conjugations of X". The results below 
show that different conjugations have real forms with distinct isometry types. 

Sp(«, R) -

So*(2«) -

$o(p, 2) -

$u(p, q) -

X 
- n odd 

n even 

- n odd 
n even 

- p odd 

p even > 2 

-p¥=qorp = q = \ 

not both even 

both even 

p = q> 1 

odd 

even 

c(X) 

1 

2 

1 

2 

(p + 0/2 
(p/2) + 1 

1 

2 

2 

3 

X' 
R x $l(/i, R) 
R x «l(/i, R), «p(w/2, C) 

«o(«, C) 
éo(«, C), R x $u*(rt) 

$o(fc, 1) x goO - k, 1), 0 < k < p/2 

*>(*, 1) x $oO - *, 1), 0 < k < p/2 

$o(/?, ?) 

$o(p, ?), $p(p/2, q/2) 

So(p, p), R x «i(p, C) 

So(p, p), R x $(p, C), $p(p/2, p/2) 

If X is a product of irreducibles (all nonexceptional), we can describe 
the conjugations of X in terms of the conjugations of the factors. 

THEOREM, (a) c(X) is finite. 
(b) If X = nf X"(*\ where the Xt are nonisomorphic irreducibles, then 

c(x) = n, c(^.)"(0-
(c) If X is irreducible, c(Xn) = ^t=n (2);0<l<n c(^07/ > wftere fAe 

exponent denotes "symmetric" Ith power of the cardinality c(X). 
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REMARKS. TO illustrate (c) in the above theorem, we give a "typical" 
conjugation of Xs if c(X) = 2. 

(x9y9 z, w, v) h> (a(y), a'^x), o0(z), o0(u), ot(v)) 

where a denotes any antiholomorphic automorphism, and the ordering o0, o0, 
aj is irrelevant. The corresponding Xf is X x X'0 x X'0 x X[. Part (c) of the 
Theorem and the above table show that there are symmetric spaces which do 
not occur as X\ for example %\(n, R) and $l(n, C). Finally, almost all of the 
conjugations in the table have been interpreted either geometrically on X, or 
as elements of classical matrix groups acting on X. 
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