REAL FORMS OF HERMITIAN SYMMETRIC SPACES¹

BY HARRIS A. JAFFEE

Communicated by Dock Rim, September 30, 1974

Introduction. The results we give here only begin to answer the following general problems: Let X be a hermitian symmetric domain, Γ a group acting holomorphically and discontinuously, and $U = \Gamma \setminus X$ the quotient. Then, by Kodaira if U is compact and smooth, or, by Baily-Borel if just U has finite volume (and Γ arithmetic), U is algebraic. One can ask for all ways of algebracizing U over \mathbb{R} , for each of the number of connected components of $U(\mathbb{R})$, and the type of each component as, say, a real analytic space. For the smooth \mathbb{R} -algebraic varieties $U = \Gamma \setminus X$, each component of $U(\mathbb{R})$ is a quotient of the form $U' = \Gamma' \setminus X'$ of a globally symmetric space $X' \subset X$ by a subgroup $\Gamma' \subset \Gamma$. To determine which X' and Γ' -actions occur is our goal.

Generalities. Let X be as above, $\sigma \colon X \to X$ an antiholomorphic involution, and X' the set of fixed points of σ . (We consider Γ only virtually now.)

PROPOSITION. (a) σ is an isometry of the Bergmann metric.

- (b) X' is a nonempty connected totally geodesic subsymmetric space of X; $\dim_{\mathbf{R}} X' = \dim_{\mathbf{C}} X$.
- (c) X' is holomorphically dense: a holomorphic or antiholomorphic automorphism of X is determined by its restriction to X'.

One can construct, at least for X without "exceptional" factors, (for example via the Lie algebra of the isometry group) involutions as above. Choose σ_0 as "standard" and x_0 a fixed point of σ_0 . Let G^h be the group of holomorphic automorphisms of X, K^h the isotropy group at x_0 . Then Gal = $\{1, \sigma_0\}$ acts by conjugation on G^h and K^h . Moreover if C denotes the set of all antiholomorphic involutions of X, and C_0 the subset fixing x_0 , then G^h acts by conjugation on C and K^h preserves C_0 . The quotients C/G^h and C_0/K^h are the G^h - and K^h -conjugacy classes of C and C_0 . These can be

Brook.

AMS (MOS) subject classifications (1970). Primary 32M15, 53C35; Secondary 22E40. Key words and phrases. Hermitian symmetric domain, antiholomorphic involution. 1 Partial results of the author's dissertation under M. Kuga at SUNY at Stony

identified with the cohomology sets $H^1(Gal, G^h)$ and $H^1(Gal, K^h)$.

PROPOSITION. The canonical map $H^1(Gal, K^h) \to H^1(Gal, G^h)$ induced by the inclusion of K^h in G^h is a bijection.

One wishes to compute $H^1(Gal, G^h)$, and from it the isometry types of real forms $X' \subset X$ of antiholomorphic involutions. The standard maps σ_0 can be chosen so that the crucial fact becomes:

LEMMA. $H^1(Gal, U(n)/\{\pm 1\})$ with action = complex conjugation is trivial for n odd, and for n even has two elements represented by the identity matrix and $J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

Results. Since all of our X and X' are globally symmetric of purely non-compact type, we can (if we are interested only in isometry types) refer to them by the Lie algebra of the isometry group. Denote by c(X), $card(H^1(Gal, G^h))$, and call it the "number of complex conjugations of X". The results below show that different conjugations have real forms with distinct isometry types.

If X is a product of irreducibles (all nonexceptional), we can describe the conjugations of X in terms of the conjugations of the factors.

THEOREM. (a) c(X) is finite.

- (b) If $X = \prod_i X_i^{n(i)}$, where the X_i are nonisomorphic irreducibles, then $c(X) = \prod_i c(X_i)^{n(i)}$.
- (c) If X is irreducible, $c(X^n) = \sum_{l = n} c(x)^{l/2} = \sum_{l \leq n} c(x)^{l/2}$, where the exponent denotes "symmetric" lth power of the cardinality c(x).

REMARKS. To illustrate (c) in the above theorem, we give a "typical" conjugation of X^5 if c(X) = 2.

$$(x, y, z, u, v) \mapsto (a(y), a^{-1}(x), \sigma_0(z), \sigma_0(u), \sigma_1(v))$$

where a denotes any antiholomorphic automorphism, and the ordering σ_0 , σ_0 , σ_1 is irrelevant. The corresponding X' is $X \times X'_0 \times X'_0 \times X'_1$. Part (c) of the Theorem and the above table show that there are symmetric spaces which do not occur as X', for example $\mathfrak{El}(n, \mathbf{R})$ and $\mathfrak{El}(n, \mathbf{C})$. Finally, almost all of the conjugations in the table have been interpreted either geometrically on X, or as elements of classical matrix groups acting on X.

BIBLIOGRAPHY

- 1. A. Adler, Anti-holomorphic involutions in families of abelian varieties, Thesis, SUNY at Stony Brook, 1974.
- 2. W. L. Baily, Jr. and A. Borel, Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math. (2) 84 (1966), 442-528. MR 35 #6870.
- 3. S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1967.
- 4. H. Jaffee, Real forms in hermitian symmetric spaces and real algebraic varieties, Thesis, SUNY at Stony Brook, 1974.
- 5. K. Kodaira, On Kähler varieties of restricted type, (an intrinsic characterization of algebraic varieties), Ann. of Math. (2) 60 (1954), 28-48. MR 16, 952.
- 6. S. Kudla, On the R-forms of certain algebraic varieties, SUNY at Stony Brook, 1974 (unpublished manuscript).
- 7. W. G. Lister, (Determination of $\mathfrak{sp}(n/2, \mathbb{C})$ as an X'), personal communication, April, 1974.

DEPARTMENT OF MATHEMATICS, SUNY AT STONY BROOK, STONY BROOK, NEW YORK 11790

Current address: School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540