LINEAR APPROXIMATION BY EXPONENTIAL SUMS ON FINITE INTERVALS

BY M. v. GOLITSCHEK1

Communicated by P. R. Halmos, October 24, 1974

Let $\Lambda = \{\lambda_k\}_{k=1}^{\infty}$ be a sequence of distinct nonnegative real numbers. It is well known that the exponential sums

(1)
$$e_s(x) = \sum_{k=1}^s a_k e^{\lambda_k t}, \quad a_k \in R, \ s = 1, 2, \cdots,$$

are dense in C[A, B], $-\infty < A < B < +\infty$, if and only if Müntz' condition $\sum_{\lambda_k \neq 0} 1/\lambda_k = +\infty$ holds. In this note Jackson-type results on the rate of convergence of the exponential sums (1) are given. Substituting

(2)
$$x = e^{t-B}, \quad t \in [A, B], x \in [a, 1],$$

where $a = e^{A-B}$, we are led to the problem where the functions $f \in C[a, 1]$, 0 < a < 1, are to be approximated on [a, 1] by the Λ -polynomials

(3)
$$p_s(x) = \sum_{k=1}^{s} b_k x^{\lambda_k}, \quad b_k \in R, \ s = 1, 2, \cdots.$$

Recently, many optimal or almost optimal Jackson-Müntz theorems on the approximation properties of the Λ -polynomials (3) for the interval [0, 1] have been published (cf. J. Bak and D. J. Newman [1] and M. v. Golitschek [2]). Considering intervals [a, 1], a > 0, one would expect that the Λ -polynomials have even better approximation properties than on [0, 1], as the "singular" point x = 0 might have less influence. Theorems 1 and 2 prove this conjecture.

THEOREM 1. Let $0 \le a \le 1, M \ge 0$. If Λ satisfies

(4)
$$0 \leq \lambda_k \leq Mk \quad \text{for all} \ k = 1, 2, \cdots,$$

then for each function $f \in C^r[a, 1]$, $r \ge 0$, and each integer $s \ge r + 1$ there exists a Λ -polynomial p_s such that for all $a \le x \le 1$

Copyright © 1975, American Mathematical Society

AMS (MOS) subject classifications (1970). Primary 41A25; Secondary 41A30.

Key words and phrases. Approximation theory, exponential sums, Jackson-Müntz theorems.

¹ Supported by the German Research Foundation (GO 270/1).

(5)
$$|f(x) - p_s(x)| \leq K_r s^{-r} \omega(f^{(r)}; 1/s) + O(\rho^s),$$

where ω denotes the modulus of continuity; $K_r > 0$ depends on a, M, and r; and ρ ($0 < \rho < 1$) depends only on a and M.

Consequently, if the exponents Λ satisfy (4), the Λ -polynomials behave asymptotically as well as the ordinary algebraic polynomials. As the *s*th width $d_s(\Lambda_{r\omega})$ of the class $\Lambda_{r\omega}(M_0, \dots, M_{r+1}; [a, 1])$ of functions in C[a, 1] is

$$d_s(\Lambda_{r\omega}) \approx s^{-r}\omega(1/s)$$

(cf. G. G. Lorentz [3, Chapters 3.7 and 9.2]), the Λ -polynomials of Theorem 1 approximate asymptotically optimally in this special sense.

EXAMPLE. The exponents Λ with $\lim_{k\to\infty} \lambda_k = \lambda \ge 0$ satisfy condition (4). For the corresponding problem in [0, 1] we could only prove (cf. M. v. Golitschek [2, p. 95]) that there exist Λ -polynomials p_s for which

$$|f(x) - p_s(x)| = O(\sqrt{s^{-r}}\omega(f^{(r)}; 1/\sqrt{s})), \quad s \to \infty.$$

THEOREM 2. Let $0 \le a \le 1, M \ge 0, \epsilon \ge 0$. Let Λ satisfy

(6)
$$\lambda_k \ge Mk \quad \text{for all} \quad k = 1, 2, \cdots$$

For each $s \ge s_0$ (s_0 sufficiently large) let $\psi(s)$ be defined as the largest positive integer for which

(7)
$$\sum_{\psi \leq k \leq s} \frac{1}{\lambda_k} \ge -(1+\epsilon)\log\sqrt{a}.$$

Then for each $f \in C^r[a, 1]$ and each $s \ge s_0$ there exists a Λ -polynomial p_s such that for all $a \le x \le 1$

(8)
$$|f(x) - p_s(x)| \le K_r \psi(s)^{-r} \omega(f^{(r)}; 1/\psi(s)) + O(\rho^{\psi(s)}),$$

where K_r depends on a, r, M, and ϵ ; and ρ ($0 < \rho < 1$) depends on a, M, and ϵ .

EXAMPLE. Let $\lambda_k = k \log k, k = 1, 2, \dots, M = 1, \epsilon > 0$. From (7) we obtain

$$\psi(s)\approx s^{\sqrt{a^{1+\epsilon}}}.$$

In [1] and [2] it was proved that in [0, 1] the corresponding "rate of convergence" is only

$$\varphi(s) = \exp\left(-2\sum_{k=1}^{s}\frac{1}{k\log k}\right) \approx (\log s)^{-2}.$$

[March

The above theorems are proved by the same method used by the author in his earlier paper [2] for Jackson-Müntz theorems on the interval [0, 1]: First the function f is approximated by ordinary algebraic polynomials P_n and then each monomial x^q $(q = 0, 1, \dots, n)$ of P_n is approximated by appropriate Λ -polynomials. The full details and further results will be published later.

By the substitution $t = B + \log x$ we obtain from Theorems 1 and 2 immediately the corresponding approximation theorem for the exponential sums (1).

THEOREM 3. Let $F \in C^r[A, B]$, $-\infty < A < B < +\infty$, $r \ge 0$. Let the best approximation of F be defined by

(9)
$$E_s^*(F;\Lambda) = \inf_{a_k} \max_{A \le t \le B} \left| F(t) - \sum_{k=1}^s a_k e^{\lambda_k t} \right|.$$

If Λ satisfies (4), then

(10)
$$E_s^*(F;\Lambda) = O(s^{-r}\omega(F^{(r)};1/s)) \quad \text{for } s \to \infty.$$

If Λ satisfies (6), then for each $\epsilon > 0$

(11)
$$E_s^*(F;\Lambda) = O(\psi(s)^{-r}\omega(F^{(r)};1/\psi(s))) \quad \text{for } s \to \infty,$$

where $\psi(s)$ is defined by (7) with $\log \sqrt{a} = (A - B)/2$.

REMARK. The same results are also valid in the L_p norms, $1 \le p \le \infty$, if the function f (or F) has an (r-1)st absolutely continuous derivative in [a, 1] (or [A, B]) and $f^{(r)} \in L_p(a, 1)$ (or $F^{(r)} \in L_p(A, B)$) and if ω denotes the integral modulus of continuity in L_p .

BIBLIOGRAPHY

1. J. Bak and D. J. Newman, Müntz-Jackson theorems in $L^{p}(0, 1)$ and C[0, 1], Amer. J. Math. 94 (1972), 437-457. MR 46 #9605.

2. M. v. Golitschek, Jackson-Müntz Sätze in der L_p -Norm, J. Approximation Theory 7 (1973), 87–106.

3. G. G. Lorentz, Approximation of functions, Holt, Rinehart & Winston, New York, 1966. MR 35 #4642; erratum, 36, 1567.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, RIVER-SIDE, CALIFORNIA 92502

INSTITUT FÜR ANGEWANDTE MATHEMATIK, AM HUBLAND, 8700 WÜRZ-BURG, WEST GERMANY