THE STABILITY PROBLEM IN SHAPE AND A WHITEHEAD THEOREM IN PRO-HOMOTOPY

BY DAVID A. EDWARDS AND ROSS GEOGHEGAN¹

Communicated by P. T. Church, November 27, 1974

1. Shape. We give a solution to the following

PROBLEM. Give necessary and sufficient conditions for a compactum Z to have the shape of (A) a complex or (B) a finite complex.

Problem B makes sense in Borsuk's shape theory for compacta [2] but in order to give meaning to Problem A, we must extend Borsuk's theory to include noncompact complexes. A particularly simple treatment is in [7]. Alternatively one can replace "complex" by "ANR" in Problem A, and use Fox's extension to metric spaces [9].

It is desirable that the conditions in Problems A and B be intrinsic. The following partial solution to Problem B is in [10]: a finite-dimensional 1-UV compactum has the shape of a finite complex if and only if its Čech cohomology with integer coefficients is finitely generated. But without the hypothesis 1-UV, the condition offered in [10] is not an intrinsic one.

Now for our solution. First some notation. If (Z, z) is a pointed connected compact subset of a euclidean space E, let $\{(X_{\alpha}, z)\}$ be the inverse system of all connected open neighborhoods of Z in E, pointed by z and bonded by inclusion. Regarding $\{(X_{\alpha}, z)\}$ as an object of $\operatorname{pro-}H_0$ [1] let $\operatorname{pro-}\pi_k(Z, z)$ be the $\operatorname{pro-}\operatorname{group}\{\pi_k(X_{\alpha}, z)\}$; let $\check{\pi}_k(Z, z)$ be its inverse limit (the kth shape group of (Z, z)). Let $\check{K}^0(G)$ denote the reduced projective class group of the group G (see p. 64 of [12]).

THEOREM 1 [8]. Let (Z, z) be as above. The following are equivalent: (i) $pro-\pi_k(Z, z)$ is isomorphic to $\check{\pi}_k(Z, z)$ in pro-groups for each $k \ge 1$; (ii) (Z, z) has the pointed shape of a pointed complex of dimension $\max\{3, \dim Z\}$; (iii) (Z, z) is dominated in pointed shape by a pointed finite complex; (iv) (Z, z) is movable and the natural topology on $\check{\pi}_k(Z, z)$ is discrete for each $k \ge 1$; (v) (Z, z) is a pointed FANR. Furthermore, Z has the shape

AMS (MOS) subject classifications (1970). Primary 55D99.

¹Supported in part by NSF Grant PO38761.

of a finite complex if and only if an intrinsically defined "Wall obstruction" $w(Z, z) \in \widetilde{K}^0(\check{\pi}_1(Z, z))$ vanishes. All possible Wall obstructions occur among two-dimensional compacta.

Movable is defined in [4]; (iv) is explained in [6]; FANR is defined in [3]. Note that if $\check{\pi}_1(Z, z)$ is free or free abelian, w(Z, z) = 0.

2. **Pro-homotopy**. Shape is the "inverse limit" of pro-homotopy and the above results are proved by means of new theorems in pro-homotopy: among them a Whitehead theorem (Theorem 2) and a stability theorem (Theorem 3).

If C is category, let $\operatorname{pro-}C$ be the category whose objects are inverse systems in C indexed by directed sets, and whose morphisms are as described in the Appendix to [1]. An object of $\operatorname{pro-}C$ indexed by the natural numbers is a tower in C. Let CW_0 be the category of pointed connected (CW) complexes and pointed maps; let H_0 be the corresponding homotopy category. We suppress base points. If $X = \{X_\alpha\}$ is in $\operatorname{pro-}CW_0$ or $\operatorname{pro-}H_0$, CW-dim $X = \sup\{\dim X_\alpha\}$; h-dim $X = \inf\{CW$ -dim Y|Y is isomorphic to X in $\operatorname{pro-}H_0\}$. X is compact if each X_α is a finite complex. $\pi_k(X)$ is the $\operatorname{pro-}\operatorname{group}\{\pi_k(X_\alpha)\}$; $\check{\pi}_k(X)$ is its inverse limit group. A weak equivalence is a morphism inducing isomorphisms on π_k for all $k \geqslant 1$.

Theorem 2 is an extension of results in [11].

THEOREM 2 [8]. Let $g: X \to Y$ be a morphism of pro- CW_0 and let $n = \max\{1 + CW\text{-}\dim X, CW\text{-}\dim Y\} < \infty$. Suppose $g_{\#}: \pi_k(X) \to \pi_k(Y)$ is an isomorphism for $k \le n$ and has a right inverse for k = n + 1. Then g induces an isomorphism of pro- H_0 . If X and Y are towers, g need only be a morphism of pro- H_0 .

Theorem 3 uses Theorem 2 together with [12].

Theorem 3 [8]. Let X be a tower in H_0 . (i) There exist a pointed complex Q and a weak equivalence $q\colon Q\to X$ in $\operatorname{pro-CW}_0$ if and only if $\pi_k(X)$ is isomorphic in $\operatorname{pro-groups}$ to $\check{\pi}_k(X)$ for all $k\geqslant 1$. In case (i) holds we have: (ii) Q can have dimension $\max\{3, h\text{-}\dim X\}$ and if $h\text{-}\dim X=1$, Q can be a bouquet of circles; (iii) if $CW\text{-}\dim X<\infty$, q induces an isomorphism in $\operatorname{pro-H}_0$; (iv) if $CW\text{-}\dim X<\infty$ and X is compact, Q is domained in H_0 by a finite complex, and X is isomorphic to a (pointed) finite complex P if and only if an intrinsically defined "Wall obstruction" $w(X)\in \widetilde{K}^0(\check{\pi}_1(X))$

vanishes: if w(X) = 0, dim $P = \dim Q$; (v) all possible Wall obstructions occur among towers of CW-dim 2.

REFERENCES

- 1. M. Artin and B. Mazur, Etale homotopy, Lecture Notes in Math., no. 100, Springer-Verlag, Berlin and New York, 1969. MR 39 #6883.
- 2. K. Borsuk, Concerning homotopy properties of compacta, Fund. Math. 62 (1968), 223-254. MR 37 #4811.
- 3. ——, Fundamental retracts and extensions of fundamental sequences, Fund. Math. 64 (1969), 55-85; errata, ibid.64 (1969), 375. MR 39 #4841.
- 4. ——, Some remarks concerning the shape of pointed compacta, Fund. Math. 67 (1970), 221-240. MR 42 #1076.
- 5. A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Math., vol. 304, Springer-Verlag, Berlin and New York, 1972.
- 6. D. A. Edwards and R. Geoghegan, Compacta weak shape equivalent to ANR's, Fund. Math. (to appear).
- 7. ———, Shapes of complexes, ends of manifolds, homotopy limits and the Wall obstruction (to appear).
- 8. ———, The stability problem in shape and a Whitehead theorem in pro-homotopy, Trans. Amer. Math. Soc. (to appear).
 - 9. R. H. Fox, On shape, Fund. Math. 74 (1972), no. 1, 47-71. MR 45 #5973.
- 10. R. Geoghegan and R. C. Lacher, Compacta with the shape of finite complexes, Fund. Math. (to appear).
- 11. S. Mardešić, On the Whitehead theorem in shape theory, Fund. Math. (to appear).
- 12. C. T. C. Wall, Finiteness conditions for CW-complexes, Ann. of Math. (2) 81 (1965), 55-69. MR 30 #1515.

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF NEW YORK AT BINGHAMTON, BINGHAMTON, NEW YORK 13901