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1. Shape. We give a solution to the following 
PROBLEM. Give necessary and sufficient conditions for a compactum 

Z to have the shape of (A) a complex or (B) a finite complex. 

Problem B makes sense in Borsuk's shape theory for compacta [2] but 
in order to give meaning to Problem A, we must extend Borsuk's theory to 
include noncompact complexes. A particularly simple treatment is in [7] . 
Alternatively one can replace "complex" by "ANR" in Problem A, and use 
Fox's extension to metric spaces [9] . 

It is desirable that the conditions in Problems A and B be intrinsic. The 
following partial solution to Problem B is in [10] : a finite-dimensional \-UV 

compactum has the shape of a finite complex if and only if its Cech cohom-

ology with integer coefficients is finitely generated. But without the hypoth­
esis \-UV, the condition offered in [10] is not an intrinsic one. 

Now for our solution. First some notation. If (Z, z) is a pointed 
connected compact subset of a euclidean space E, let {(Xa, z)} be the inverse 
system of all connected open neighborhoods of Z in E, pointed by z and 
bonded by inclusion. Regarding {(Xa,z)} as an object of pro-#0 [1] let 
pro-irk(Z, z) be the pro-group {nk(Xa, z)}; let nk(Zf z) be its inverse limit 
(the fcth shape group of (Z, z)). Let K°(G) denote the reduced projective 
class group of the group G (see p. 64 of [12]). 

THEOREM 1 [8]. Let (Z, z) be as above. The following are equivalent: 
(i) prO'7rk(Z, z) is isomorphic to rtk(Z, z) in pro-groups for each k > 1; (ii) 
(Z, z) has the pointed shape of a pointed complex of dimension max {3, dim Z}; 
(iii) (Z, z) is dominated in pointed shape by a pointed finite complex; 
(iv) (Z, z) is movable and the natural topology on rrk(Z, z) is discrete 
for each k > 1 ; (v) (Z, z) is a pointed FANR. Furthermore, Z has the shape 
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of a finite complex if and only if an intrinsically defined "Wall obstruction" 

w(Z, z) G A'0(7f1(Z, z)) vanishes. All possible Wall obstructions occur among 

two-dimensional compacta. 

Movable is defined in [4] ; (iv) is explained in [6] ; FANR is defined in 

[3] . Note that if n^Z, z) is free or free abelian, w(Z, z) = 0. 

2. Pro-homotopy. Shape is the "inverse limit" of pro-homotopy and 
the above results are proved by means of new theorems in pro-homotopy: 
among them a Whitehead theorem (Theorem 2) and a stability theorem 
(Theorem 3). 

If C is category, let pro-C be the category whose objects are inverse 
systems in C indexed by directed sets, and whose morphisms are as described 
in the Appendix to [1] . An object of pro-C indexed by the natural numbers 
is a tower in C. Let CW0 be the category of pointed connected (CW) com­
plexes and pointed maps; let H0 be the corresponding homotopy category. 
We suppress base points. If X = {Xa}v& in pro-CW0 or pro-//0, CW-dim X = 
sup {dim Xa}\ //-dim X = inf {CW-dim Y\Y is isomorphic to X in pro-//0}. X 

is compact if each Xa is a finite complex. nk(X) is the pro-group {nk(Xa)}', 

TTk(X) is its inverse limit group. A weak equivalence is a morphism inducing 
isomorphisms on nk for all k > 1. 

Theorem 2 is an extension of results in [11]. 

THEOREM 2 [8]. Let g: X —» Y be a morphism ofpro-CW0 and let 

n = max{l + CW-dim X, CW-dim Y} < «>. Suppose g#: nk(X) —> -nk(Y) 

is an isomorphism for k <n and has a right inverse for k = n + 1. Then g 

induces an isomorphism ofpro-H0. If X and Y are towers, g need only be a 

morphism ofpro-H0. 

Theorem 3 uses Theorem 2 together with [12]. 

THEOREM 3 [8]. Let X be a tower in H0. (i) There exist a pointed 

complex Q and a weak equivalence q: Q—*Xin pro-CW0 if and only if 

nk(X) is isomorphic in pro-groups to nk(X) for all k > 1. In case (i) holds we 

have: (ii) Q can have dimension max {3, ft-dim X} and if h-dim X = 1, 
Q can be a bouquet of circles; (iii) ifCW-dim X < <*>, q induces an isomor­

phism in pro-H0 ; (iv) if CW-dim X < °° and X is compact, Q is domained 

in H0 by a finite complex, and X is isomorphic to a (pointed) finite complex 

P if and only if an intrinsically defined "Wall obstruction" w(X) G^tf^X)) 
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vanishes: ifw(X) = 0, dim P = dim Q; (v) ail possible Wall obstructions 
occur among towers of CW-dim 2. 
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