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MAXIMUM PRINCIPLES WITHOUT DIFFERENTIABILITY1 
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Introduction. For reasons both theoretical and practical, there has arisen 
an interest in variational problems not possessing the customary differentia­
bility hypotheses. The author developed in his dissertation a theory of nec­
essary conditions for certain general problems in optimal control and the 
calculus of variations. In this article we describe the kind of results that may 
be obtained when this theory is applied to control problems lacking differen­
tiability or smoothness. In §1 we describe the problem and some terminology, 
and state a theorem similar to the Pontryagin Maximum Principle. §2 gives 
a "deparametrized" form of the necessary conditions. In neither case are the 
results stated in their greatest possible generality. Proofs, details and more 
general results will appear elsewhere. 

1. Let there be given functions /: Rn —+R, g: [0, 1] x Rn x Rm 

—>R and ƒ : [0,1] xRn xRm—+Rn, as well as a multifunction U: 

[0, 1] —*R m (i.e. a mapping from [0, 1] to the subsets of Rm). 

An admissible control-response pair is a pair (u, x) such that u is a 
(Lebesgue) measurable function from [0, 1] to Rm with u(t) E U(t) a.e., 
x is an absolutely continuous function from [0, 1] to Rn, and 

x(t)=f(tfx(t)9u(t)) a.e. 

The illustrative optimal control problem we consider is 

(1) minimize /(x(l)) + f^git, x(t), u(t))dt over the control-response 

pairs (u, x) satisfying x(0) £ S, where S is a given closed subset of Rn. 
DEFINITION 1. Let 0: Rn—* R be Iipschitz continuous. The 

generalized gradient of <j> at s, denoted 90(s), is the set 
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CO J lim V<KSi)\> 

where we consider all sequences st converging to s such that V0O,) exists 
and converges (co denotes "convex hull"). We remark only that if 0 is 
C1, 80(s) = {V0(s)}, and that if 0 is convex, 30(s) is the set of subgradi-
ents of 0 at s (see [2] ). 

DEFINITION 2. We say pERn is norma! to S at s if for some 
positive e, 

ep G dds(s), 

where ds(s) — d(s, 5), the (Euclidean) distance function. 
It can be shown that when S is a C1 manifold, the normals in the 

above sense coincide with the usual normal space at s, and that when S is 
convex, we get precisely the normals in the sense of convex analysis. 

THEOREM 1. Let the control-response pair (v, z) solve problem (1) 
{locally), where the following hold: 

(a) ƒ and g are measurable in t and continuous in (x, u). 
(b) / is Lipschitz near z(l). 
(c) U is a closed-valued and measurable multifunction (see [3] ). 
(d) For almost every t, f(t, -, v(t)) is C1 near z(t). 
(e) For every positive integer ƒ there is an integrable function kj such 

that 

| / a s, u) -f(t, v, u)\ < kf(t)\s - v\ 

whenever u lies in U(t), \u - v(i)\ < j , and s and v are near z(t), and 
a similar condition holds for g. 

Then there exists an absolutely continuous function p: [0, 1] —• Rn 

such that 

(2) p{f) +p(t)Jsf(t, z(t\ KO) e bsg(t, z(t)9 KO) a-e. 
(3) P(0 ' fit, z(t),u)-g(t, z(t),u)<p(t)-At,z(t),v(t))-g(t,z(t)9p(t)) 

for all u in U(i), a.e, 
(4) p(0) is normal to S at z(Q) (Definition 2) and -p(l) G 3/(z(l)). 

REMARKS. In contrast to the assumptions usually present, neither v 
nor U is required to be bounded; note also that the control set U may vary 
with time. As mentioned earlier, the generalized gradients in (2) and (4), 
and the normal in (4) reduce to familiar concepts when smoothness or convex­
ity is present. 
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Note that in hypothesis (d), ƒ need be C1 in the state variable only 
at the optimal control v. In the next section, we shall dispense with smooth­
ness completely. It is easy to see that in the classical case, where in particular 
ƒ and g have derivatives in s continuous in (t, s, u)9 and where v is 
essentially bounded, hypotheses (a)—(e) are satisfied. Js refers to the 
Jacobian matrix. 

2. Let there be given a compact-valued multifunction E: [0, 1] x Rn 

—>Rn. The absolutely continuous function x: [0, 1] —• Rn is a trajectory 
for E if x(f) e E(t, x(t)) a.e. 

The control problem we consider now is to minimize l(x(l)) over the 
trajectories x for E satisfying x(0) G S, where / and S are as in The­
orem 1. 

DEFINITION 3. E is Lipschitz in s near z, where z is a given func­
tion from [0, 1] to Rn, if there exists an integrable function k such that 
when sx and s2 are near z(t)9 the Hausdorff distance between E(t, st) 
and E(t, s2) is no greater than k(t)\st - s2\. 

THEOREM 2. Let the trajectory z solve the above problem (locally), 
where E is measurable in t and Lipschitz in s near z. Then there exists 
an absolutely continuous function p: [0, 1] —• Rn such that: 

(5) (-p(t\Kt)) G dH(t, z(t)9 p(t)) a.e. 
(6) p(t) • u < p(i) • i(f) for all v in E(t, z(t))9 a.e. 
(7) p(0) is normal to S at z(0) and -p(l) G 3/(z(l)) where H, the 

generalized or maximized Hamiltonian, is the function defined by 

H(t, x, p) = max{p • u: v G E(t, x) }, 

and dH refers to the generalized gradients of H with respect to the (x, p) 
variables. 

REMARKS. An important special case is when E has the form 

E(t,s)= {f(t,s,u): >ueU(t)}. 

We then require only that ƒ be lipschitz in s in order for E to be lipschitz 
in s. The correspondence between (5) and (2) may be clarified by showing, 
as can be done, that (5) is equivalent to: 

(-P(0, *(0) € co {(p(t) • v, f(tt z(t\ u)): ve dsf(t, z(t)9 u), u G M(t) }, 

where 
M(t) = {« € U(ty. Pit)f(t, z{t), u) = H(t, zit), pit))}, 
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and dsf is defined as in Definition 1, replacing gradients by Jacobian matrices. 
Conditions similar to these, for a relaxed control problem, have recently been 
announced by Warga [4]. Hamiltonian conditions for convex problems were 
discussed by Rockafellar in [3]. 
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