SOME INTEGRAL INEQUALITIES OF TWO GEOMETRIC INVARIANTS

BY BANG-YEN CHEN¹

Communicated by Shlomo Sternberg, August 12, 1974

Let M be an n-dimensional manifold immersed in a euclidean m-space E^m . Let S and α be the length of second fundamental form and the length of mean curvature vector and let ρ be the scalar curvature of M. Then $\rho = n^2\alpha^2 - S^2$. From Proposition 2.2 of [2], ρ satisfies the following pinching property:

$$-S^2 \leq \rho \leq (n-1)S^2.$$

Let F be a field and let $H_i(M; F)$ be the *i*th homology group of M over F. We define a topological invariant $\beta(M)$ by

$$\beta(M) = \max \left\{ \sum_{i=0}^{n} \dim H_{i}(M; F) : F \text{ fields} \right\}.$$

The purpose of this note is to announce the following results. The detailed proofs will appear elsewhere.

Theorem 1. Let M be an n-dimensional closed manifold immersed in a euclidean m-space E^m . Then

$$(1) \qquad \int_{M} S^{n} dV \geqslant \gamma \beta(M),$$

where

(2)
$$\gamma = \begin{cases} n^{n/2} c_n / 2, & \text{if } n \text{ is even,} \\ n^{(n+1)/2} c_{n+1} c_{m-1} / 2 c_m (m-1)^{1/2}, & \text{if } n \text{ is odd,} \end{cases}$$

and c_n is the area of unit n-spheres. The equality sign holds only when M is imbedded as a hypersphere of a linear (n + 1)-subspace of E^m .

AMS (MOS) subject classifications (1970). Primary 53B25, 53C40.

Key words and phrases. Length of second fundamental form, total mean curvature, scalar curvature, homology groups.

¹This work was partially supported by NSF grant GP-36684.

This theorem was proved by using several lemmas given in [1, Chapter VII]. By applying Theorem 1 we have the following theorem on total mean curvature.

THEOREM 2. Let M be an n-dimensional closed manifold immersed in E^m . If there is a $\delta > -1$ such that $\delta S^2 \leq \rho \leq (n-1)S^2$, then

(3)
$$\int_{M} \alpha^{n} dV \ge (1 + \delta)^{n/2} \gamma \beta(M) / n^{n}.$$

The equality sign of (3) holds only when $\delta = n - 1$ and M is imbedded as a hypersphere in an (n + 1)-dimensional linear subspace of E^m .

Some special cases of these results were obtained in [2].

BIBLIOGRAPHY

- 1. B.-Y. Chen, Geometry of submanifolds, Dekker, New York, 1973.
- 2. ———, On the total curvature of immersed manifolds. II. Mean curvature and length of second fundamental form, Amer. J. Math. 94 (1972), 799–809. MR 47 #7660.

DEPARTMENT OF MATHEMATICS, MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48824