WEAK SEQUENTIAL CONVERGENCE IN THE DUAL OF A BANACH SPACE DOES NOT IMPLY NORM CONVERGENCE

BY BENGT JOSEFSON

Communicated by Shlomo Sternberg, June 4, 1974

In this note we shall outline a proof of the following result (details will appear elsewhere).

For every infinite-dimensional Banach space E there is a sequence in E', the dual space, which tends to 0 in the weak topology $\sigma(E', E)$ but not in the norm topology. This is well known for separable or reflexive Banach spaces. See also [3] for other examples. The theorem has one of its main applications in the theory of holomorphic functions on infinite-dimensional topological vector spaces [6].

Let L(E, F) denote the set of all bounded linear mappings from E into a Banach space F. Let l^{∞} be the Banach space of all bounded sequences $z = (z_i)_{i=1}^{\infty}$ and C_0 the Banach space $C_0 = \{z \in l^{\infty} \colon z_i \to 0 \text{ as } j \to \infty\}$.

THEOREM. There are $\varphi_j \in E'$, $j \in \mathbb{N}$, such that $\|\varphi_j\| = 1$ and $\lim_{j \to \infty} \varphi_j(z) = 0$ for all $z \in E$.

PROOF. Let $F \subset E$ be a separable, infinite-dimensional subspace. From [1] and [2] it follows that there are $z^{(j)} \in F$ and $\psi_j \in E'$ such that $\|\psi_j\| = 1$, $\|z^{(j)}\| = 1$, $\psi_j(z^{(j)}) = 1$ and $\lim_{j \to \infty} \psi_j(z) = 0$ for every $z \in F$. Let $\psi \in L(E, l^\infty)$ be the mapping $\psi(z) = (\psi_1(z), \psi_2(z), \cdots, \psi_j(z), \cdots)$. Put $D = \psi(\overline{B}_E)$, where \overline{B}_E is the closed unit ball in E. Proj_[U] $D \cap \mathcal{C}_B$ 0 is not compact for any infinite set $U \subset \mathbb{N}$, where B_0 is the open unit ball in C_0 , C0 denotes the complement and $\operatorname{Proj}_{[U]}(z_j)_{j=1}^\infty = (z_j')_{j=1}^\infty$, where $z_j = z_j'$ if $j \in U$ and $z_j' = 0$ if $j \notin U$. Put $N_U(z) = \overline{\lim}_{j,k \to \infty;j,k \in U} |z_j - z_k|$ for $z \in l^\infty$.

We shall say that E has property A if there are linear functionals as in the theorem.

AMS (MOS) subject classifications (1970). Primary 46B99.

LEMMA 1. If E does not have property A there exist an infinite set $V \subset \mathbb{N}$ and a number $\epsilon > 0$ such that $\sup_{z \in D} N_U(z) > \epsilon$ for every infinite $U \subset V$.

The lemma follows easily from the fact that $\operatorname{Proj}_{[U]} D$ is not compact, hence, if E does not have property A, $\operatorname{Proj}_{[U]} D$ is not separable for any infinite $U \subset \mathbb{N}$.

LEMMA 2. If there exist $\varphi_n \in L(I^\infty, \mathbb{C}^n)$ and $C_k > 0$ such that $\sup_{z \in D} |\operatorname{Proj}_{[t]} \varphi_n(z)| \ge 1$ for every $n \in \mathbb{N}$ and $t \in \{1, 2, \cdots, n\}$, and such that for every $z \in D$, $n \in \mathbb{N}$ and $k \in \mathbb{N}$, $|\operatorname{Proj}_{[s]} \varphi_n(z)| \ge 2^{-k}$ for at most C_k different $s \in \{1, 2, \cdots, n\}$, then E has property A.

The lemma follows essentially from the fact that there are uncountably many $g_{\alpha} \in U_1 \times U_2 \times \cdots \times U_n \times \cdots$, where $U_n = \{1, 2, \cdots, n\}$, such that $\operatorname{Proj}_{[n]} g_{\alpha_1} = \operatorname{Proj}_{[n]} g_{\alpha_2}$ for at most finitely many $n \in \mathbb{N}$ if $\alpha_1 \neq \alpha_2$. We shall recall the following

THEOREM (ROSENTHAL [7]). There exists a surjection $\varphi \in L(l^{\infty}, l^{2}(B))$, where card $B = 2^{\operatorname{card} \mathbf{N}}$ and $l^{2}(B)$ is the Hilbert space on B.

We shall also recall the fact that if $\varphi' \in L(F, l^{\infty})$, where $F \subset G$ is a subspace of a Banach space G, φ' can be extended to $\varphi'' \in L(G, l^{\infty})$ such that $\|\varphi''\| = \|\varphi'\|$, by the Hahn-Banach theorem.

From this fact, the theorem of Rosenthal, and Lemmas 1 and 2, it is possible to prove

Lemma 3. Assume E does not have property A. Then there exist $\varphi_n \in L(l^\infty, l^2(B)), H_n \subset B, z^{(n)} \in D$ and $X_n > 0$ such that $B \setminus H_n$ is finite, $H_n \subset H_{n-1} \subset \cdots \subset H_0 = B$, $\sup_{z \in D} \|\operatorname{Proj}_{[H_{k-1}]} \varphi_n(z)\| \leq X_k$ if $k \leq n$, $\|\operatorname{Proj}_{[H_{k-1} \setminus H_k]} \varphi_n(z^{(k)})\| > X_k/100$ if $k \leq n$ and $(X_k)_{k=1}^\infty$ is not dominated by a convergent geometric series.

To prove the theorem we suppose that E does not have property A. Then the sequence (X_n) in Lemma 3 may be taken to be decreasing; hence there exists, to every $k \in \mathbb{N}$, a number $n_k \in \mathbb{N}$ such that $X_{n_k}/X_{n_k+k} < 1 + 1/k$. But then

$$\left(\frac{100}{X_{n_k+k}} \operatorname{Proj}_{[H_{n_k-1}H_{n_k+k-1}]} \varphi_{n_k+k}\right)_{k=1}^{\infty}$$

and $C_n = 2^{2n} \cdot 200$ have the same properties as $(\varphi_k)_{k=1}^{\infty}$ and C_n in

Lemma 2, which is a contradiction. Q.E.D.

Let $\mathcal{H}(F)$ be the set of holomorphic functions, that is to say locally bounded and analytic in the sense of Gâteaux, on a complex locally convex space F. A set $B \subset F$ is said to be bounding if $\sup_{z \in B} |f(z)| < \infty$ for every $f \in \mathcal{H}(F)$.

COROLLARY 1. If F is an infinite-dimensional, Hausdorff complex locally convex space, then every bounding set has an empty interior.

PROOF. The Corollary follows from the theorem if we argue as in [2]. The results in this paper were announced in May 1973 at an international conference on infinite-dimensional holomorphy in Lexington, Kentucky.

REFERENCES

- 1. G. Coeuré, Fonctions plurisousharmoniques sur les espaces vectoriels topologiques et applications à l'étude des fonctions analytiques, Ann. Inst. Fourier (Grenoble) 20 (1970), fasc. 1, 361-432. MR 43 #564.
- 2. S. Dineen, Unbounded holomorphic functions on a Banach space, J. London Math. Soc. (2) 4 (1971/72), 461-465. MR 45 #5753.
 - 3. E. Lacey, Separable quotients of Banach spaces, An. Acad. Brasil. Ci. 44 (1972).
- 4. J. Lindenstrauss, Some aspects of the theory of Banach spaces, Advances in Math. 5 (1970), 159-180. MR 43 #5288.
- 5. L. Nachbin, Topology on spaces of holomorphic mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 47, Springer-Verlag, New York, 1969. MR 40 #7787.
- 6. Recent developments in infinite dimensional holomorphy, Bull. Amer. Math. Soc. 79 (1973), 625-640.
- 7. H. Rosenthal, On quasi-complemented subspaces of Banach spaces, with an appendix on compactness of operators from $L^p(\mu)$ to $L^r(\nu)$, J. Functional Analysis 4 (1969), 176–214. MR 40 #3277.
- 8. E. Thorp and R. Whitley, Operator representation theorems, Illinois J. Math. 9 (1965), 595-601. MR 31 #6126.

DEPARTMENT OF MATHEMATICS, UPPSALA UNIVERSITY, SYSSLOMANS-GATAN 8, UPPSALA, SWEDEN