ON WEAK AND STRONG CONVERGENCE OF POSITIVE CONTRACTIONS

IN L_n SPACES

BY M. A. AKCOGLU1 AND L. SUCHESTON2

Communicated by P. R. Halmos, August 1, 1974

We consider a linear operator T mapping an L_p space into itself. T will be assumed to be *positive* $(f \ge 0 \Rightarrow Tf \ge 0)$ and a contraction $(\|T\| \le 1)$. A matrix (a_{ni}) , n, $i = 1, 2, \dots$, is called *uniformly regular* if

(1)
$$\sup_{n} \sum_{i} |a_{ni}| < \infty, \quad \lim_{n} \sup_{i} |a_{ni}| = 0, \quad \lim_{n} \sum_{i} a_{ni} = 1.$$

THEOREM 1. If $1 and if T is a positive contraction on <math>L_p$, then the following conditions are equivalent

- (A) $\lim_{n} T^{n}$ exists in the weak operator topology,
- (B) $\lim_{n} \Sigma_{i} a_{ni} T^{i}$ exists in the strong operator topology for every uniformly regular matrix (a_{ni}) .

The theorem is already known for p = 1 and for p = 2, even for not necessarily positive contractions ([2], [5]).

SKETCH OF PROOF. (i) The implication $(B) \Rightarrow (A)$ is easy and holds in more general situations (cf. [5]). Hence we only prove $(A) \Rightarrow (B)$.

(ii) If G is the largest set such that G supports a T-invariant function g, then $f \in L_p(G)$ implies that $Tf \in L_p(G)$. Tg = g implies $T^*g^{p-1} = g^{p-1}$, hence $f \in L_{p/(p-1)}(G)$ implies $T^*f \in L_{p/(p-1)}(G)$. Therefore there is no communication between G and $F = G^c$, and the restrictions of T to $L_p(G)$ and $L_p(F)$ may be considered separately. On G there exists a strictly positive T-invariant function, and therefore the theorem for $L_p(G)$ follows from the results proved in $[5, \S 2]$. There exist no nontrivial positive T-invariant functions on F, and hence the weak limit of T^n restricted to $L_p(F)$ must be zero.

AMS (MOS) subject classifications (1970). Primary 47A35.

¹ Research supported by NRC Grant A 3974.

² Research supported by NSF Grant GP 34118.

- (iii) Assuming that T^n converges weakly to zero, $(A) \Rightarrow (B)$ is proved for invertible isometries. The computation is made possible by the application of the elementary identity $(T^{-n}f)^{p-1} = T^*(f^{p-1})$. In fact, one obtains estimates uniform in the following sense: The rate of weak unaveraged convergence determines the rate of strong convergence of averages independently of the operator and the function.
- (iv) The uniformity allows the approximation by finite dimensional operators for which the contraction case is reduced to the invertible isometry case by the application of a dilation theorem proved in [1]. For detailed proofs see [4].

REFERENCES

- 1. M. A. Akcoglu, A pointwise ergodic theorem in L_p -spaces, Canad. J. Math. (to appear).
- 2. M. A. Akcoglu and L. Sucheston, On operator convergence in Hilbert space and in Lebesgue space, Period. Math. Hungar. 2 (1972), 235-244.
- 3. , On convergence of iterates of positive contractions in L_p -spaces, J. Approximation Theory (to appear).
- 4. ———, Weak convergence of iterates of positive contractions implies strong convergence of averages (to appear).
- 5. H. Fong and L. Sucheston, On a mixing property of operators in L_p spaces, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 28 (1974), 1965–1971.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TORONTO, TORONTO, ONTARIO, CANADA

DEPARTMENT OF MATHEMATICS, OHIO STATE UNIVERSITY, COLUMBUS, OHIO 43210