DIFFERENTIAL INEQUALITIES AND CARATHÉODORY FUNCTIONS

BY SANFORD MILLER¹

Communicated by Robert Bartle, April 15, 1974

ABSTRACT. The author proves a very general result from which it is possible to show that a regular function satisfying a differential inequality of a certain type is necessarily a Carathéodory function. This result has applications in the theory of univalent functions.

Let \mathscr{P} denote the class of Carathéodory functions; that is, functions $p(z)=1+p_1z+p_2z^2+\cdots$ regular in the unit disc Δ , and for which Re p(z)>0.

In a recent paper [2] it was shown that if $p(z)=1+p_1z+p_2z^2+\cdots$ is regular in Δ , with $p(z)\neq 0$ in Δ , and if α is a real number, then for $z\in\Delta$

(1)
$$\operatorname{Re}[p(z) + \alpha(zp'(z)/p(z))] > 0 \Rightarrow \operatorname{Re} p(z) > 0;$$

that is, $p(z) \in \mathscr{P}$.

In this note we replace the differential inequality in (1) by a much more general condition which will still imply that p(z) is a Carathéodory function.

DEFINITION 1. Let $u=u_1+u_2i$ and $v=v_1+v_2i$, and let Ψ be the set of functions $\psi(u,v)$ satisfying:

- (a) $\psi(u, v)$ is continuous in a domain D of $C \times C$;
- (b) $(1,0) \in D$ and Re $\psi(1,0) > 0$;
- (c) Re $\psi(u_2i, v_1) \leq 0$ when $(u_2i, v_1) \in D$ and $v_1 \leq -1/2(1+u_2^2)$.

We denote by Φ the subset of Ψ which satisfies (a), (b) and the following condition:

(c') Re $\psi(u_2i, v_1) \leq 0$ when $(u_2i, v_1) \in D$ and $v_1 \leq 0$.

Examples. It is easy to check that each of the following functions are in Ψ.

$$\psi_1(u, v) = u + \alpha v/u$$
, α real, with $D = [C - \{0\}] \times C$.

 $\psi_2(u, v) = u^2 + v$ with $D = C \times C$.

 $\psi_3(u, v) = u + \alpha v, \ \alpha \ge 0$, with $D = C \times C$.

 $\psi_4(u, v) = u - v/u^2 \text{ with } D = [C - \{0\}] \times C.$

 $\psi_5(u, v) = -\ln(\frac{1}{2} - v) \text{ with } D = C \times \{(v_1, v_2) | v_1 < \frac{1}{2}\}.$

AMS (MOS) subject classifications (1970). Primary 30A04, 30A20, 34A40; Secondary 30A32.

Key words and phrases. Carathéodory functions, univalent functions.

¹ The author acknowledges support received from the National Academy of Sciences through its exchange program with the Academy of the Socialist Republic of Romania.

Note that ψ_1 , ψ_2 , ψ_3 and ψ_4 are also in Φ but $\psi_5 \notin \Phi$. The set Φ is thus a proper subset of Ψ . Though some generality is lost in considering the class Φ as opposed to considering Ψ , the former is much easier to work with algebraically.

DEFINITION 2. Let $p(z)=1+p_1z+p_2z^2+\cdots$ be regular in Δ and let $\psi \in \Psi$ with corresponding domain D. We denote by $\mathscr{P}(\psi)$ those functions p(z) that satisfy:

- (i) $(p(z), zp'(z)) \in D$, and
- (ii) Re $\psi(p(z), zp'(z)) > 0$, when $z \in \Delta$.

Note that $\mathscr{P}(\psi)$ is not empty, since for all $\psi \in \Psi$ it is true that $p(z)=1+p_1z \in \mathscr{P}(\psi)$ for p_1 sufficiently small (depending on ψ). It appears further that most $\psi \in \Psi$ provide a large number of other functions in $\mathscr{P}(\psi)$.

Our main result is the following theorem.

THEOREM 1. For any
$$\psi \in \Psi$$
, $\mathscr{P}(\psi) \subseteq \mathscr{P}$.

In other words the Theorem states that if $\psi \in \Psi$, with corresponding domain D, and if $(p, zp') \in D$ then

(2)
$$\operatorname{Re} \psi(p(z), zp'(z)) > 0 \Rightarrow \operatorname{Re} p(z) > 0.$$

Since $\Phi \subset \Psi$, we immediately have the following Corollary.

COROLLARY. For any
$$\psi \in \Phi$$
, $\mathscr{P}(\psi) \subset \mathscr{P}$.

The proof of the Theorem is involved and will not be presented here. However an independent proof of the Corollary follows.

Let $p(z) \in \mathcal{P}(\psi)$, and assume there exists a point $z_0 = r_0 \exp(i\theta_0) \in \Delta$ such that $\operatorname{Re} p(z) \geq 0$ for $|z| \leq r_0$, and $\operatorname{Re} p(z_0) = 0$. Thus $p(z_0) = ai$, where a is a real number. We now show that $z_0 p'(z_0) = k$, where $k \leq 0$. Since the result is true if $p'(z_0) = 0$, we need only consider the case $p'(z_0) \neq 0$. The curve $p(r_0 e^{i\theta})$ is tangent to the imaginary axis at z_0 , and so we have $\arg z_0 p'(z_0) = \pi$; that is $z_0 p'(z_0) = k$, where k < 0. Hence at z_0 we have $\operatorname{Re} \psi(p, zp') = \operatorname{Re} \psi(ai, k)$ with a real and $k \leq 0$. But this implies that $\operatorname{Re} \psi(p, zp') \leq 0$ at $z = z_0$, which is a contradiction of the fact that $p(z) \in \mathcal{P}(\psi)$. Hence $\operatorname{Re} p(z) > 0$ for $z \in \Delta$.

REMARKS. If we apply the Theorem (or the Corollary) to the example $\psi_1(u, v)$, we obtain condition (1). Applying it to ψ_2 , ψ_3 and ψ_4 we obtain respectively:

(3)
$$\operatorname{Re}[p^{2}(z) + zp'(z)] > 0 \Rightarrow \operatorname{Re}p(z) > 0;$$

(4)
$$\operatorname{Re}[p(z) + \alpha z p'(z)] > 0$$
, with $\alpha \ge 0 \Rightarrow \operatorname{Re} p(z) > 0$,

and

(5)
$$p(z) \neq 0$$
 and $\operatorname{Re}[p(z) - zp'(z)/p^2(z)] > 0 \Rightarrow \operatorname{Re}p(z) > 0$.

We see that for different $\psi \in \Psi$ we can obtain different differential conditions for p(z) to be a Carathéodory function. By appropriately choosing $\psi \in \Psi$ we can define many new subclasses of $\mathscr P$ and can prove many properties of the class $\mathscr P$.

The theorem has many applications in the theory of univalent functions. If we set p(z)=zf'(z)/f(z) in Theorem 1, we see from (2) that each $\psi \in \Psi$ generates a subclass of starlike functions. In particular $\psi_1(u,v)=u+\alpha v/u$ generates the class of alpha-convex functions [2]. Similarly by setting $p(z)=e^{i\gamma}zf'(z)/f(z)$, where $|\gamma|<\frac{1}{2}$, or p(z)=f'(z)/g'(z), where g(z) is convex, and using slightly modified forms of Definitions 1 and 2 and Theorem 1, we can generate many new subclasses of spiral-like and close-to-convex functions, respectively. These results, the proof of Theorem 1, and other applications will appear in a forthcoming paper [1].

REFERENCES

- 1. Z. Lewandowski, S. Miller and E. Złotkiewicz, Generating functions for classes of univalent functions, (to appear).
- 2. S. S. Miller, P. Mocanu and M. O. Reade, All alpha-convex functions are starlike, Rev. Roumaine Math. Pures Appl. 17 (1972), 1395-1397.

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF NEW YORK, BROCKPORT, NEW YORK 14420