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1. Introduction. Let X and Y be real Hubert spaces and let A be a 
linear operator with domain V(A) C X and range in Y. An element u G 
V(A) is said to be a least-squares solution of the equation 

(1) Ax=y 

for a given y G Y if inf {\\Ax - y II : x G V(A)} = \\Au - y II. A pseudo-

solution of (1) for a given y G 7 is a least-squares solution of minimal norm. 
Equation (I) is well-posed relative to the spaces X, Y if for each y € Y9 

(1) has a unique pseudosolution which depends continuously on y\ otherwise 
the equation is said to be ill-posed. 

One objective of this research is to show, when X and Y are L2-
spaces of square-integrable functions, that the topology of reproducing kernel 
Hilbert spaces (RKHS) is an appropriate topology for the regularization of 
ill-posed linear operator equations, and to initiate a study of generalized in­
verses of linear operators acting between two RKHS. A second objective is 
to provide an approach to optimal approximations of linear operator equations 
in the context of RKHS, and to demonstrate the relation between the regu­
larization operator of the equation Af = g and the generalized inverse of A 

in an appropriate RKHS. (For some background on regularization methods 
see [3], [5], [9] ; for generalized inverses see, for example, [4].) 
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2. Generalized inverses in RKHS. Let H Q denote the RKHS of real-
valued functions on the bounded interval S with reproducing kernel Q(s, s' ). 
Denote the inner product and norm in HQ by < • , • )Q and II • IL re­
spectively. Then for f^HQ,f(s) = (Qsff)Q where Qs(s') := Q(s, s) = 

<QS, Qs'> for s, s' € S. (See [1] for properties of RKHS.) The kernel 
0(5, s') induces a selfadjoint Hilbert-Schmidt operator on L2 [S], the space 
of square-integrable real-valued functions on S, by 

(GO(s) = fsQ(?,s')f(s')ds'. 

Furthermore, we have HQ = QV\L2[S]) and 

ll/llö = inf{llpll L2[S] : V G L2[S], Q1/2p F ƒ } 

(cf. [8], [10]). For ƒ G Hô , let Q"Vlf denote the element p of minimal 

L2 [S] -norm that satisfies Qi/2p = ƒ. We then have 

< / i 5 / 2 > ö
= = < Ö ~ 1 / 2 / i J 0 - 1 / 2 / 2 > m ^ ] -

THEOREM 1. Let A be a linear operator from X = L2 [S] wfo F = 
jt-2 IT! > w/zere S, T are closed bounded intervals. Assume that A has the 

following properties: 

(i) HQCV(A)CX (throughout " C " denotes point-set inclusion 

only), where HQ is an RKHS with continuous kernel on S x S\ 

(ii) A[Hn] C Ho C H^ c 7, where HR and H~ are RKHS with 
* R R 

continuous kernels on T x T\ and 
(iii) the null space of A in HQ is closed in H Q. 

Let A\ Y(resp. A^ „) denote the generalized inverse of A when A 
' Q,R 

is considered as a map from X into Y (resp. from HQ into tf~). Let 

yeV(A* „ ) . Then y G V(QV2AQ1/2)\XY^R-V2) and 

(2) A* „ y = QV2(R-1/2AQV2)f
XfYR-1/2y. 

(The operators Q and R are those induced by the RKHS HQ and H„ 
respectively.) R 

It should be noted that an operator A may map HQ onto another 
RKHS, while failing to have a closed range in L2 [T]. This is, for example, 
the case if A is a Hilbert-Schmidt integral operator (with nondegenerate 
kernel) on L2[S]. 
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3. Explicit representations of minimal-norm solutions of linear operator 
equations in RKHS. We assume that HQ is chosen so that 

(3) the linear functional Et defined by Etf = (Af) (t) are continu­

ous in H Q . 

Then there exists r\t G HQ for t E.T such that (Af) (t) =(vt,f>Q, 

where r}t(s) = <Vt, QS)Q = AQs(t). Let HR be the RKHS with kernel 

R(t, t')-= (r}t, Vt
,y>Q, t, t' G T. Let V be the closure of the span of 

[rit: t G T} in HQ- It follows easily that the null space of A in HQ is 

VL (1 in HQ). Since <r?r, T?^>0 = < ^ , ^ > / 2 , where Rt(t')\= R(t, t'), 

there is an isometric isomorphism between the subspace V and HR genera­

ted by the correspondence r\t G V ~ Rt G HR. Under this isomorphism, 

f~g<=>(Vt,f)Q = (Rt,g),i.e.,g(t) = (Af)(t);PvQs^r1^ AQS, where 

Pv is the orthogonal projector from HQ onto K 

For g G HR let ƒ be the element in H Q of minimal H Q -norm which 

satisfies the equation Af = g. Then ƒ G F and g — f We have the follow­

ing representations for ƒ 

THEOREM 2. 7/(3) fto/cfa dwd g E HR, then f(s) = <ö5, /> ö = 

(w*,g)R> Furthermore, if V(A*) is dense in Y, where A* is the adjoint 

of A considered as an operator from X into Y, and if HQ, HR = A(HQ) 
•J» sts sic *f* 

possess continuous kernels, then A,Q R^g = QA (AQA )ytY S-

4. Regularization in RKHS. Let HQ and Hp be RKHS with norms 
II* IL and II • llP respectively. By a regularized pseudosolution (in RKHS) 

of the equation Af — g, we mean a solution to the variational problem: Find 
f^ G HQ to minimize 

(4) 0 g ( / ) = Uf- g\\2
P + All ƒ II J , X > 0 

(0 (ƒ) will be assigned + °° if 4/* - # é Hp). In this section, A is a linear 

operator densely defined on L2 [S] into L2 [T], and HQ must be chosen 

so that A[HQ] = HRi where W^ is some RKHS contained (as a set) in 

L2 [T], and Hp is a subset of L2 [T]. Assume g = g0 4- £ for some 

g0GA[HQ] and some ? G H ? . For X > 0, let HXP be the RKHS with 

kernel \P(t, t'), where P(t, t') is the (continuous) kernel associated with 

Hp. We have HP = HXP and II • llj = XII • lljjp. Let R(\) = # 4- Xp, and 

let HR(X) be the RKHS with kernel RÇK; t, t'). Then (see Aronszajn [1, 

p. 352]) HR(K) is the Hubert space of functions of the form g = g0 + £, 
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where g0 E HR and i- E Hp. Following Aronszajn [1] , we note that this 
decomposition is not unique unless HP n HR = {0}. The norm on HRçK\ 
is given by 

\\gq(X) = min {ll*0ll| + W*p : *0 e H*. * e Hp,*0 + * = * } . 

THEOREM 3. Suppose V(A*) is dense in Y, HQ C V(A) and A 

and HQ satisfy (3). Suppose HQ, HR and Hp C Y all have continuous 

kernels. Then for g E HRr\y the unique minimizing element fK E HQ of 

the functional <t>g(f) is given by 

fx(s) = <AQ„g)RW = (QA*(AQA* + XP)^Y g)(s). 

We call the (linear) mapping which assigns to each g E HR^ the 

unique minimizing element fx, the regularization operator of the equation 

Af = g. 

THEOREM 4. If Hp n HR = {0}, then the minimizing element fK of 

(4) is the solution to the problem: Find f E !T2 to minimize 11/IL, wftere 

a = if E We : WAf-g\\R(x) = inf IU/* - g\\R(X)\ . 
1 fie Hg ) 

In the setting of this section we have ^4[Hg] = HR C HR^ C Y. Re­
placing f/~ by W^/^) in (2), we obtain 

for y E %4((2,JR(\)))- ^ i s helpful to remember that the topology on HR is 
not, in general, the restriction of the topology of HR + KP, with the notable ex­
ception of the case HR n Hp = {0}. The authors provide elsewhere concrete 
examples arising in approximation of boundary-value problems where H R is not 
a closed subspace of HR + \P-

We emphasize that if HR n Hp = {0}, then HR is a closed sub-
space of HR + \p', in this case the regularization operator is a generalized 
inverse in an appropriate RKHS (Theorem 4). 

5. Convergence rates of approximate regularized solutions to linear 
operator equations. The regularization method of §4 requires in practice some 
approximate procedure for solving (4) numerically. The principal result of 
[7] is the establishment of uniform pointwise convergence of approximate 



1974] REGULARIZATION AND APPROXIMATION IN RKHS 1217 

solutions obtained by moment discretization of (4). Let Tn = {tv tv 

tn}, where t. E T, tx < t2 < • • • < tn. For a generic function h on T, 

let hn = (h(tt), • • • , h(tn)). Let Pn denote the n x n matrix whose 17th 
element is P(tt, tj), and define IIhn\\p = min {WeII : e G £ n , P%e = fcw}, 
if Ziw G / ? ^ ) ; * » otherwise. 

THEOREM 5. Let the operator A be as in §4. Let fx n be the mini-

mizing element in Hn of the functional Jn = \\(Af)n — gn\\p + XII ƒ \\Q 

for X > 0. Let PT (A) be the orthogonal projector of HR(X\ onto the-

subspace spanned by {Rt(K) : t G Tn}. Then 

< 11^ - P ^ W r ? : fe(x) I ; - PTn(X)g\\R(xy 

Furthermore, let A = maxlf /+1 - t(\, \fx(s) - fKn(s)\ = 0(Am) or 0(A2m\ 
depending on smoothness properties of the kernel R(K, t, t') and the func­
tions g and r\* . In the particular case when Hp O HR = {0}, {fx n} 
converges to A^g. (An explicit formula for fXn and furth^: properties of 
fx are given in [7].) 

The results of this paper provide an approach to simultaneous regulari-

zation and approximation of (ill-posed) linear operator equations which 

applies to a large class of operator equations that include boundary-value 

problems, Fredholm integral equations of the first kind, and integrodifferential 

equations; see also [2] , [10]. The Sobolev spaces Wm,m>0 are included 

in the class of spaces considered. 

The proofs of the preceding theorems as well as related results and 

examples will appear in [6] and [7] . 
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