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In this note we will describe an "infinite process", related to "wild top
ology", with applications to closed, smooth manifolds. 

DEFINITION. Consider an increasing sequence of solid tori: 

r ^ T ^ c * . . . ^Tn c+Tn + 1c->... 

(T. = k(i) # (Sl x D2)) such that: 
(a) Tk C int Tk+1, and Tk is a smooth submanifold of Tk^.l. 

(b) The natural inclusion Tk —•. Tk+1 is null-homotopic. 
The open 3-manifold W = lim T( will be called a Whitehead manifold. 

It is an easy (and well-known) exercise to show that for any Whitehead mani
fold W, one has: W x R = R*. 

THEOREM 1. Let X be a smooth 3-manifold with TÏXX = 0, T a solid 
torus, and T—*jX a smooth embedding. There exists a Whitehead manifold 
W defined by a sequence of nested tori: 

h h 
T=TX

 c • T2
 c • • • • 

and a smooth embedding W—>k X such that the following diagram is commu
tative: 

T >X 

• • • o j 2 o j x 

w 

PROOF. It suffices to show that there exists a solid torus T2 and a 
commutative diagram of smooth embeddings: 

AMS (MOS) subject classifications (1970). Primary 22-XX. 

Copyright © 1974, American Mathematical Society 

Y/ 

1203 



1204 V. POÉNARU 

T >X 

h 

such that j \ is null-homotopic. (Afterwards we can continue this process 
indefinitely.) 

Consider a wedge (bouquet) of circles K = \JP.= S} which is a spine 

of T. There exists a commutative diagram: 

/ P \ P 

3( v DA = v s\ >x 

V A2 

1=1 

where \jj is a generic immersion, without triple points, such that the set of 
double points is a union of (disjoined) arcs. 

Take T2 = a regular neighborhood of ^(Vf= 1 ^ ) i n ^ (containing 
71 in its interior) a.s.o. 

COROLLARY 2 . Let E 3 2>e a smooth homotopy 3-sphere. There 

exist two open subsets (/lf (/2 C S 3 x R such that: 
(a) S 3 xR = D\ U £/2, 

(b) Ĉ . is diffeomorphic to R4. a 

PROOF. Let 2 3 = !T' U r " be a Heegaard decomposition, and consider 
the Whitehead manifolds W', W" (containing T\ T" and contained in E3) 
provided by Theorem 1. 

Since W x R = R4 for any Whitehead manifold, we can take U1 = 
W' x R C S 3 x # , [ / ^ f x K ^ x i ? , Q.E.D. 
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