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1. Introduction. This paper is concerned with the following situation. 
Suppose we are given a simplicial complex X which is a Poincare duality 
space for some (twisted) coefficients, and that K is a subcomplex of X 
which is itself a Poincare duality space; when can we deduce that the inclu­
sion of K in X is homotopic to a Poincare embedding? 

There are two interesting cases of the above situation, the first is given 
by a theorem of Bredon [1] , which states that if Z acts on a simplicial 
complex which is a Z -Poincare duality space, then each component of the 
fixed point set is a Zp-Poincare duality space. The other case is that of the 
product of a Poincare duality space with itself, triangulated so that the diag­
onal is a subcomplex. We shall give a condition sufficiënt to obtain an em­
bedding in these two cases, subject to certain dimensional restrictions. 

2. Normally embedded subcomplexes. For the purpose of simplicity 
of exposition, we shall restrict ourselves to the simply-connected case. We 
shall begin by discussing the case of integer coefficients, and will describe the 
modifications required for the Z case when we discuss the Bredon theorem. 
We assume familiarity with the basic definitions of Poincare complex, Poincare 
embedding (they can be found for instance in Levitt [3] ), and with the con­
cept of a normal space and normal pair as defined by Quinn [4] . 

It is known [4] that the mapping cylinder of a normal map is a nor­
mal pair. Furthermore a Poincare complex is a normal space with the 
spherical fibration given by the Spivak normal bundle construction. 

A Poincare complex of formal dimension n, that is presented as an 
«-dimensional simplicial complex, will be called a triangulated Poincare com­
plex. 
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Notation, If G is an abelian group, FG will denote the free 
abelian group obtained by dividing out by the torsion subgroup. 

DEFINITION 2.1. Let X be a triangulated Poincare complex, K a full 
subcomplex of X, and v(k) a simplicial neighborhood of K obtained by 
deriving X near K; then K is a normally embedded subcomplex of X if 
the image of the fundamental class [X] in F(Hn(v(K)), dv(K)) = 
F(Hn(X, X-v(K))) induced by c: X-*X(X-v(K)) is a generator. 

If a group G acts simplicially on X with K an invariant subcomplex, 
then an obvious modification of the above defines K as an equivariantly 

normally embedded subcomplex. In the usual way one can also define a 
normally embedded subpair of a triangulated Poincaré pair. 

EXAMPLE 2.2. Let P be a Poincare complex of formal dimension 

> 5; then there is a triangulated Poincare complex Q homotopy equivalent 
to P such that Q x Q can be triangulated so that the diagonal is a normally 

embedded subcomplex. This follows since Q can be chosen to be a sim­
plicial fl-cycle (for example by using a handle decomposition [2] ). 

We note the following lemma. 

LEMMA 2.3. Suppose K is a normally embedded subcomplex of a 

triangulated Poincare complex X, and ƒ: K —> L a homotopy equivalence, 

L a simplicial complex. Then X can be modified by a homotopy equivalence 

so K contains L as a normally embedded subcomplex. 

PROOF. If v(k) is the simplicial neighborhood of K, we can excise 
it and replace it by the mapping cylinder of dv(k) —• v(k) —» K —> L. 

COROLLARY. If in Definition 2.1, K is itself a Poincare complex of 

formal dimension > 5, we can suppose K is presented as a union of han­

dles. 

PROOF. According to Jones [2] any Poincaré complex of dimension 
> 5 has a handle decomposition. 

3. The main theorem. The main result of this paper is the following. 

THEOREM 3.1. Let X be a triangulated Poincaré complex of di­

mension n, and suppose K is a normally embedded subcomplex which is 

a triangulated Poincaré complex of dimension k > 5, k <n. Then the in­

clusion K —• N is homotopic to a Poincaré embedding. 

We shall outline the main idea of the proof (details will appear elsewhere 
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[6] ). Let v(K) be the simplicial neighborhood of K in X. Suppose we 
can find a spherical fibration £: E —> K of rank (n - k). E is then a nor­
mal space of formal dimension (n - 1). Furthermore one can show that 
dv(K) is also a normal space of formal dimension (n - 1), So if we can 
find a normal map h: dv(k) —• E we can replace v(K) by Mn VEM^ in 
X. (Mh, Mç are the mapping cylinders of h and £ respectively.) It then 
follows from Wall [5, Proposition 2.7(ii)] that the pairs ((X - v(Kj) U 
Mh, E), and {M^ E) give the required splitting of X. The construction of 
E and the normal map h are performed by a fairly straightforward induc­
tion using a handle decomposition of K. 

With a simple modification of the proof, one obtains 

COROLLARY. Let X be a Poincarè complex of formal dimension 

n> 5 and suppose X x X is triangulated as a In-complex so that the di­

agonal is an equivariantly normally embedded subcomplex, where Z2 acts 

on X x X by exchange of factors; then there is an equivariant splitting 

b: X x X —• (M, bN) U (N, bN) with N homotopy equivalent to the 

diagonal and Z2 acting freely on M. The inclusion dN~* N is homo-

topic to a spherical fibration, the tangent bundle associated to the given 

triangulation. 

The bundle obtained appears to depend on the triangulation; this will 

be discussed elsewhere [6] . 

4. The Bredon theorem. In this section we indicate briefly how our 
results may be applied to the Bredon theorem mentioned in the introduction. 
In a manner parallel to Jones [2] , we define a category CW , whose 
objects are finite CW-complexes and whose morphisms are all continuous 
maps. A homotopy in CWp from ht: Xx —>Y to h2: X2 —> Y is a 
commutative diagram1 

X2 H2 

X ~ ^ ^ Y 

Xx ni 

where each vertical map is a Zp-homotopy equivalence; that is, an isomorphism 
of fundamental groups and Zp -homotopy. A finite CW-complex X is a 

1 ADDED IN PROOF. In [6] it will be shown that the bundle is independent of 

the triangulations. 
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CWp-Poincaré complex if it satisfies Poincaré duality for Z coefficients and 
a CWp-Poincaré embedding is defined in the natural way. A CWp-normal 
space is a CW-complex X together with a Zp-spherical fibration £ and map 
p: Sn + k —• r(£). As before a simplicial complex of dimension n which is 
a CWp-Poincaré complex of formal dimension n is called a triangulated CWp-
Poincaré complex. Again Jones' work implies that a CWp-Poincaré complex 
of dimension > 5 has a handle decomposition. 

DEFINITION 4.1. Let X be a triangulated CWp-Poincaré complex and 
K a subcomplex. Then K is a normally embedded subcomplex if K has 
a simplicial neighborhood v(K) in some derived neighborhood of X near 
K such that the image of the fundamental class [X] £ Hn(X, Zp) under the 
map Hn(X, Zp) —• Hn(v(K)9 dv(K); Zp) is nonzero. If X has a group ac­
tion and K is invariant, then we can define equivariantly normally embedded 

in the obvious way. 

One can then modify the proof of Theorem 3.1 to obtain 

THEOREM 4.2. Let X be a triangulated CW -Poincaré complex of di­
mension n, and suppose Zp acts simplicially on X with fixed point set 
F. Then for each component F0 of F that is a CWp-Poincaré complex of 
formal dimension > 5 and is equivariantly normally embedded; this inclu­
sion F0 —• X is homotopic to an equivariant CW -Poincaré embedding. 

To show the applicability of this to the Bredon theorem we need the 
following results. 

PROPOSITION 4.3. Let X be a CWp-Poincaré complex of formal di­

mension nt and suppose Zp acts simplicially on X with fixed point sets 

F = Fx U F2 U • • • U Fr, each Fi a CWp-Poincaré complex of formal 

dimension ft > 3. Then the (r 4- 1) - ad (X; Fx, • • • , Fr) is homotopy 

equivalent to an (r + 1) - ad(X' ;Fj , • • • , F'r) of triangulated CWp-Poincaré 

complexes. 

PROPOSITION 4.4. Let X be a triangulated CWp-Poincaré complex of 

dimension n, and suppose Zp acts simplicially on X with fixed point set 

F. Then each component F0 of the fixed point set is equivariantly nor­

mally embedded. 

The first of these propositions is proved by constructing an appropriate 
model for the quotient space X/Zp, and the second uses a spectral sequence 
argument following the method of proof of Bredon's theorem. We thus obtain 
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THEOREM 4.5. Let X be a CWp-Poincaré complex represented by a 

simplicial complex on which Z acts simplicially. Then if the formal dimen­

sion of each component of the fixed point set (as a CWp~Poincaré complex) 

is > 5, X is equivariantly homotopy equivalent to a triangulated CW -

Poincaré complex Y, on which Z acts and such that the fixed point set 

is CW -Poincare embedded. 

REFERENCES 

1. G. Bredon, Fixed point sets of actions on Poincaré duality spaces, Topology 

12 (1973), 159-176. 

2. L. Jones, Patch spaces: A geometric representation for Poincaré spaces, Ann. 

of Math. (2) 97 (1973), 306-343. MR 47 #4269. 

3. N. Levitt, On the structure of Poincaré duality spaces, Topology 7 (1968), 

369-388. MR 40 #2089. 

4. F. Quinn, Surgery on Poincaré and normal spaces, Bull. Amer. Math. Soc. 78 

(1972), 262-267. MR 45 #6014. 

5. C. T. C. Wall, Surgery on compact manifolds, Academic Press, New York, 1970. 

6. J. P. E. Hodgson, Embedded subcomplexes of Poincaré complexes (in prepara­

tion). 

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PENNSYLVANIA, 

PHILADELPHIA, PENNSYLVANIA 19104 

Current address: Department of Mathematics, Adelphi University, Garden City, 
Long Island, New York 11530 


