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Associated with every locally compact group are triples of Banach 
algebras 

(1) TO, L\G), L"(G)}, {A(G\ C\G\ B(G)} 

intimately connected with duality theory (the notation is that of [1]). In 
both cases the middle algebra is the closure of LX(G) in the dual of the first 
algebra and also the predual of the third algebra (at least when G is amen­
able in the second case). Furthermore, the third algebra is closely con­
nected with the multiplier algebra of the first algebra. 

For abelian groups, compact or discrete, Varopoulos [11], [12] showed 
to great effect how the second triple could be obtained and studied by 
starting with the tensor product ^0(G) (8)y^0(^)» 7 the greatest cross-
norm. An analogous construction starting this time with(^0(G

!) ®x të0(G)9 

A the least cross-norm, would produce the first triple. On the other hand, 
at least for amenable groups, the triples in (1) can be considered as the 
extreme case/?=1, 2, respectively, of a family {AV(G), cvv{G), BP(G)}, 
1 ^ / ? ^ 2 , associated with /^-convolution operator theory, and obtained by 
starting with the tensor product LV'(G) <g)y L

v(G),pj±\, or<g0(G) ®y L\G), 
p=\. Indeed, Herz has shown that AV{G) is a pointwise Banach algebra 
[6] while BV(G), l < p ^ 2 , is both the multiplier algebra of AV{G) and the 
Banach dual space of cvp(G), G amenable. In these notes we outline a new 
approach to convolution operator theory, by starting with ^^G) ®a ^0(G)9 

a a tensorial norm [5], rather than with LV'{G) ®y L
V(G). A triple 

{ f a(G), &a'(G), #""(<7)} analogous to (1) is obtained. For //-convolution 
operator theory, a family of tensorial norms CLVQ is used. The two basic 
ideas are to exploit classical Banach space theory concerning Lp(iu)-
spaces, for example, forgetting about group structure, and then, when a 
group structure is imposed, to exploit standard ^ 0 ( ^ ) - a n d L1(G)-tech-
niques because all the 'L^-theory' has been thrown into the norm aM, 
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associated with which is a highly developed operator ideal theory (cf. [2], 
[4]). Solutions to a number of open problems are obtained (cf. §4). 
Detailed proofs will appear elsewhere. 

1. Varopoulos spaces, algebras. By a Varopoulos space we shall mean 
any Banach space V\X9 7) of the form V\X9 Y)=tf0(X)<g)aV0(Y)9 

where X, Y are locally compact Hausdorff spaces and a a tensorial norm. 
The simplest such space is Vk{X9 7 ) = ^ 0 ( X x 7), and there is always a 
norm-decreasing isomorphism 2a* V\X9 Y)->V\X9 Y). Thus 

*f0(X) ®y <V0(Y) = Vy(X9 Y) ç V\X, Y) c V\X9 Y) = V0(X x 7). 

A Varopoulos space Va{X, Y) is said to be a Varopoulos algebra if a( ƒ • g) ^ 
a(/)oc(g) for the pointwise product of/, g e ̂ 0(X) ®^0( 7) (a{-) norm on 
F a (^ , Y)). 

THEOREM 1. Each Varopoulos algebra V*(X9 Y) is a commutative semi-
simple Banach algebra with maximal ideal space I x F . Furthermore, 
Va(X, Y) is regular and self adjoint. 

Both V\X9 Y) and V\X9 7) are Varopoulos algebras, and any V\X9 Y) 
is a Banach V7(X9 7)-module. More generally, for any sequence {xn} 
(finite or infinite) in any Banach space X, set 

M r({xJ) = s u p { ( 2 |<x*, x n ) r j / r :x* e X*, \\x*\\ 3 l ) , r* oo, 

(Mw({xB})=sup„ | |xj|). When l^q^p-^co and t e ï ® ? ) set 

«™(0 = M ' ! *, 5) = inf(2 \KVJ rMp({xn})MQ,({yn}), 

where l/q+l/q' — l, llp+l/q' + l / r = l and the infimum is taken over all 
representations f = 2 n ^n*n®J>n (cf- [8])- If X=^0(X)9 then 

Mr({/W}) = sup{^2 l / . W r J / r : x GXJ, 

and so we deduce 

THEOREM 2. 7%e Varopoulos space VPQ(X)9 l^p<q^co9 obtained by 
taking a = a ^ v is always a Varopoulos algebra. 

2. Fundamental properties. Deep Banach space results yield properties 
of V™(X, Y). For any pair X, Y 

V0(X) ®y V0(Y) = Vlcc(X9 Y) c v**(X9 Y) c F n ( Z , 7) = ^ 0 ( Z x 7) 

isometrically or with norm-decreasing inclusion. The right-hand equality 
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follows from the fact that ^ 0 ( 7) is an if?ï+£-space for every e>0 [9]. From 
the Grothendieck 'fundamental theorem for metric spaces' [5], [9] we 
obtain 

THEOREM 3. Up to equivalence of norms, V22(X, 7 ) = ^ 0 ( Z ) 0 y V0(Y); 
in fact, 

M / ) ^ r(f) ^ KG*22(f), feV0(X) ® *f0(Y), 

where KG is the Grothendieck universal constant. 

THEOREM 4 (KWAPIEN-PIETSCH). A linear operator T'.cêÇi{Y)->M(X) 
belongs to (VPQ(X, 7))* if and only if for each £>0 there exist probability 
measures /u on X and v on Y such that 

!<ƒ, Tg>| ̂  (1 + e) ||T||M ( J j ƒ r' d/ij" (£ | g | 9 dvJ/B 

/ O r a / / / e ^ 0 ( X ) , g e ^ 0 ( 7 ) . 

Use of the bilinear Riesz-Thorin theorem and Theorem 3 now gives 

THEOREM 5. (i) If 1 ̂ p^2 and 2^q^ oo, then V™(X9 7 ) = V\X, 7) wp 
to equivalence of norms. 

(ii) Ifl^p<zq<:2 or 2^p^q<oo, then Vrs(X, F ) ç P ( I , 7) where 

1 _ 1 _ 0 0 i i „ 0 0 n ^ G ^ i 
- = —-— + - , - = —-— + - , o < 0 < l, 
r 2 p s 2 q 

the embedding being continuous. 
(iii) If l<:P<q<2, then V™(X, Y)=VlQ(X, 7) up to equivalence of 

norms. 

The proof of property (iii) in Theorem 5 also uses the fact that a bounded 
linear operator T:(é'(S)->Lr(ibt) automatically is absolutely ^-summing if 
2 < r < s ^ o o (cf. [10]). 

3. The triple {T\G\ J§?a'(G), iT*{G)}. Let G be a locally compact 
group, and L^{G) ®a, L

X(G) the completion of L1(G)<S>L1(G) with respect to 
the associate norm a' of a [5]; equivalently, ^(G) ®a> LX(G) is the closure 
of L\GxG) in (Fa(G, G))*. Starting from <*?0(G) ®aV0(G)9 V-(G)®a. 
L\G), {L\G)®a.L\G))*> we define a triple {T\G), JS?a'(G), ir*(G)}. 
Now from Theorem 3 it follows (nontrivially !) that (L\G) ®a, L

1 ^ ) ) * 
always contains M 04(G)) where {M<j>)(x, y)=(f>(xy~1). 

DEFINITION 1. ^ a ( G ) will denote the completion of A(G) with respect 
to the norm induced on M(A{G)) by (L\G) ®a, L

X(G))*. 
Clearly 

4(G) <= ̂ ( G ) ç iT«(G) S ^A(G) = «'oCG). 
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The closure of L\G) in ( f a (G))* is denoted by jS?a'(G). Then 

L\G) = Se\G) ç o5Pa'(G) ç C\G). 

Finally, set iTa(G)={</> e L00 (G): M(</>) G (L^G) ®a, L^G))*}; clearly 

JB(G) £ ^ ( G ) ç HT\G) <= -)TA(G) = L°°(G). 

When oc=oc3)V, l < p ^ ^ o o , we write i^PQ(G), £P**(G)9 iTPQ(G). 

THEOREM 6. If V\G, G) w « Varopoulos algebra, then i^\G) and 1T\G) 
are Banach algebras under pointwise multiplication. In particular, i^m(G) 
always is such a Banach algebra. For arbitrary tensorial norm a, ^ a ( G ) and 
iT*(G) are Banach i^y (G)-modules while 

1T\G) n <g(G) = iT\Gd) n V(G) "Bochner-Eberlein" 

isometrically (Gd=G with discrete topology). 

The most precise results are obtained when G is amenable with an 
interesting use of the Glicksberg-Reiter theorem. 

THEOREM 7. Let G be an amenable group. Then, up to equivalence of 
norms, 

iT\G) = {^\G)T, iT*(G) n <V(G) = (-2£(G))* n V(G\ 

where &%(G) denotes the closure ofl\Gd) in ( f "(G))*. 

4. Applications to ZAconvolution operator theory. Using character­
izations of C^oOO ®a^o(^))* m terms of (p,q)-absolutely summing 
operators stemming from Theorem 4, together with characterizations of 
(LX(G) ®tf LX(G))*, a=a 3 ) V , in terms of (p, q)-integral operators, we 
obtain 

THEOREM 8. For any locally compact group G the following inclusions 
hold: 

(i) A*(G)ciT**(G)9 l ^ p ^ o o ; 
(ii) B(G)^ir^(G)^Bp(G), \<p<oo; 

except possibly for the first inclusion in (ii) all embeddings are norm-
decreasing. 

Theorems 2, 5 and 6 now provide a completely new approach to the 
main results of Herz (both in [6] and unpublished) since ypv{G) is a 
closed subspace of W™(G). 

THEOREM 9. For each locally compact group G and each p, l^p^co, 
AV{G) is a Banach algebra and a Banach AQ(G)-module via pointwise multi­
plication when l^p^q^2 or l^q^p^oo. 
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These algebras 1fm(G) have useful identifications. The Banach space of 
(right-) convolution operators T\Lr(G)-+Ls(G) will be denoted by Cvrs(G), 
the closure of LX(G) in Cvrs(G) by cvrs(G) (when r9 s are suitably restricted). 
In case r= oo or s= oo, ^0(G) replaces L°°(G). It is known that, when G is 
amenable, Cvv\G)={Am(G))* isometrically when 

A™(G)= P{LP\G) ®y U(G)) 

(cf. [1]). 

THEOREM 10. Let G be an amenable group. Then isometrically 
(i) A*(G)=Tr**(G)9 l^p<:oo; 

(ii) cvp(G)=&»»(G)9 l<:p<:Oo; 
(iii) Bp(G)=iTpp(G)9 l<p<oo; 
(iv) (a?*(G))*=2P(G), K / K o o . 

/« particular, 

A(G) c ^ ( G ) ç i4p(G) c y0(G) 

whenever l^p^q^2 or l^q^p^co. 

THEOREM 11. Let G be a compact group. Then isometrically 
(i) A**(G)=ir*9(G)9 

(ii) afi*(G)=&q9(G) 
for l^p^q<oo. 

Part (iii) of Theorem 5 when translated into convolution operator theory 
says that 

(2) Cvpr(G) = Cvp\G)9 G compact, 1 ^ r < p < 2. 

Doss established (2) for compact abelian groups by showing that CvQP(G) 
coincides with the space Cv^(G) of weak type (p,p) convolution operators. 
Setting Al(G)=P(Lpl(G) ®yL

p(G))9 G abelian, l<p<oo9 we can com­
plete the identification of the algebras irpq{G)9 G abelian. 

THEOREM 12. Let G be a locally compact abelian group. Then 

r™(G) = Al(G)9 &**{G) = cvl(G\ (Tr\G)Y = Cvl(G) 

provided l^r<p<2. In particular, A„(G) is a pointwise Banach algebra. 

The techniques which this approach provides lead to solutions for 
arbitrary amenable groups of many of the problems left open by Eymard 
[1]. In addition, nine of the squares left open in the multiplier table given 
by Hewitt-Ross [7, pp. 410-411] can be completed and partial information 
given for the remaining two. 
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