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1. Introduction. This paper is a direct successor to [8], "Partition 
identities'', henceforward referred to as PL The lecture presented under 
the title of the present paper [9] can be roughly broken into three parts. 
Part 1 was a historical survey; Part 2 presented the basic elements of the 
theory of partition ideals and discussed partition ideals of order 1 since 
they possess rather elegant properties that are easily developed. Both 
Parts 1 and 2 essentially appear in §§ 1-3 of PI. Part 3 (of [9]) was devoted 
to a discussion of how the more difficult questions in the theory of partition 
identities might be attacked. In §2 we shall present a resume of the ele­
mentary definitions and results for partition ideals. In §3 below, we shall 
present in detail the discussion of the Rogers-Ramanujan identities that 
made up [9, Part 3]. It is now possible to provide a substantial partial 
answer to the first of the two main questions raised in §3, and this result 
will be presented as Theorem 4.1 in §4. §5 will outline how the ideas in­
volved in the proof of Theorem 4.1 have extended our knowledge of the 
general Rogers-Ramanujan theorem [6], [14]. In §6, we shall briefly 
survey the analytic results related to the second question raised in §3. 
We conclude with a look at the open problems in this subject. 

2. Partition ideals. All of the results in this section are presented 
(and proved) in PI. We shall, therefore, omit proofs and shall state only 
those results that are essential to the developments that follow. The 
lattice-theoretic definitions may be found in [19, Chapter 1]. 

Let £f denote the set of all sequences {ft}u=i (more briefly {/J), where 
each fi is a nonnegative integer and where only finitely many/^ are non­
zero. Then Sf forms a distributive lattice under the partial ordering 
{fi} = {gi} whenever f^gi for each i. Furthermore the functions # and 
o\<Sf->N (where N is the set of nonnegative integers) given by # ({ / J ) = 
2fi> °({fi})= 2fi ' i a r e positive valuations on &. We let 0={0, 0, 0, • • •} 
denote the constant sequence of zeros. 
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In intuitive terms, the sequences {/J that make up SP may each be 
thought of as defining a partition of a nonnegative integer where ƒ gives 
the number of times i appears as a part. The function a maps each sequence 
{/J onto the number being partitioned, and #({ƒ*}) is the number of 
parts of the partition. 

Recall now that a semi-ideal J in a lattice L is a subset of L such that 
whenever aeJ,xeL, and x^a, then xeJ [19, p. 56]. 

DEFINITION 1. A nonempty semi-ideal in the lattice SP is called a 
partition ideal. 

DEFINITION 2. If C is a partition ideal (in SP), we say that/?(C; n) is 
the C-partition function if for each n,p(C; n) denotes the cardinality of the 
sct{{/i}eC|cT(t/;})-ii}. 

DEFINITION 3. We say two partition ideals C± and C2 are equivalent 
(or partition-theoretically equivalent, or PT-equivalent) if for each non-
negative integer n, p{Cx\ n)=p(C2l n). We shall write Cx ^>PT C2. 

FUNDAMENTAL PROBLEM. Fully describe the equivalence classes of 
partition ideals under the equivalence ^ P T . 

DEFINITION 4. We say that a partition ideal C has order k provided 
k is the least integer such that whenever {f} ^ C, there exists m such that 
{ƒ;•} £ C, where 

fi—U i = m, m + 1, • • • , m + fc - 1, 

= 0, otherwise. 

Intuitively, the assertion that C is of order A: makes explicit the idea 
that if ir e SP, then summands of n at least k units apart cannot "interact" 
to affect whether TT G SP. 

SECOND PROBLEM. Fully describe the equivalence classes of partition 
ideals that contain a partition ideal of order 1 under the equivalence r^PT. 

The partition ideals of order 1 have especially nice properties and are 
extremely amenable to various analytic and combinatorial techniques. 
The following results make this assertion abundantly obvious. The first 
result shows that if C is of order 1 then the generating function for the 
C-partition function is an infinite product. 

THEOREM 2.1 [8, P. 20, THEOREM 1]. Let C be a partition ideal of order 
1. Let d^supifjecf. Then for \q\<l, 

00 / 00 

%p(C;n)q«= Yl d " qlid'+1)) U d ~ «")• 
w ^ O l=>l;dt<ao I 1=1 

The ideals of SP are the partition ideals C that are closed under union 
[19, p. 56], where {/Ju{g,}={max(/„^)}. 
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THEOREM 2.2 [8, p. 21, THEOREM 2]. The ideals in £f are the partition 
ideals of order 1. 

Finally Theorem 2.1 implies a simple computational device for deter­
mining the equivalence of two partition ideals of order 1. 

THEOREM 2.3 [8, P. 22, THEOREM 3]. Let C be a partition ideal of order 
1 and let the dx be defined as in Theorem 2.1. Let C' be a second partition 
ideal of order 1 with associated d[. Then C r^VT C' if and only if the two 
multisets {i.e. sets with possible multiplicities of elements•; see [29, p. 22] 
for detailed description of multisets) {j(dj+l)}dj<00 and {j(dj+l)}d><00 are 
identical. 

Theorem 2.3 provides us with the type of characterization one might 
possibly hope for in answer to the Fundamental Problem. As was shown 
in §3 of PI, questions restricted to possible equivalence of partition ideals 
of order 1 are extremely routine in virtue of Theorem 2.3. A theorem that 
dropped the restriction to order 1 but was similar in character to Theorem 
2.3 in which whether or not C ^ P T C' could be answered by an algorithm 
that utilized certain easily ascertainable parameters of each partition 
ideal would certainly constitute an adequate answer to the Fundamental 
Problem. 

3. The Rogers-Ramanujan identities. Our object now is to analyze 
one of the classical proofs of the Rogers-Ramanujan identities [31] 
using the terminology and approach of §2. As a result of our analysis we 
shall pose two questions that appear to hold reasonable promise for 
attacking the Fundamental Problem (and the Second Problem) described 
in §2. 

THEOREM 3.1. Jf ®={{jù e ^f+f^l) and ^={{f} e ^\f>0 
implies i = l, 4 (mod 5)}, then 

REMARK. This is the first of the Rogers-Ramanujan identities written 
in the language of partition ideals. We point out that the condition 
" / z + / m = ï " that defines M merely insures that in the partition 
*%T=\fi 'i=cr({fi}), no part repeats and no consecutive integers appear. 
Hence p(0t\n) is the number of partitions of n in which the difference 
between parts is at least 2. On the other hand if {f} £ ^~, then 2*Li f% * i is 
a partition in which only parts = 1 , 4 (mod 5) may appear. 

Thus Theorem 3.1 asserts that the partitions of each integer n in which 
the difference between parts is at least 2 are equinumerous with the par­
titions of n into parts = 1 or 4 (mod 5). This is the standard number-
theoretic formulation of the first Rogers-Ramanujan identity. 
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SKETCH OF PROOF OF THEOREM 3.1. We begin by considering 

(3.1) Mx; q) =Mx) = 2 * s VA'' , 

a double series convergent at least for \q\<l, I^KI^I -1 . Thus 

(3.2) M i ) = 2 K ^ ; ^ w
? 

and, in fact, the coefficient of xmqn in (3.1) is the number of partitions of 
n belonging to M that have exactly m parts. 

Now 

where 
»x = {{ƒ,} e@\fi = 0}, ^ = {{ƒ•} e » | h = !}• 

By the definition of ^ it is clear that 

# i = {{ / a I / ; - ƒ « , « ̂  2,A' = 0 for some {ƒ,} e 0} 

&* = {{fi} Iƒ," = fi-*> i ^ 3 , / ï = 1, ƒ5 = 0 for some {ƒ,} 6 « } . 

Hence since 0txC\ffl2=0, 

Mx)=2 &*q*-i- ( 2 + 2 )* sv-« 

= 2 (xs/-i«s/-i* + xi+s/<-v+SA"a0 

= 2 (x sV / , ( m > + *«*SV"(i+a>) 

= M*<?) + xqMxq2). 
Now it is possible to prove in a completely elementary manner (coefficient 
comparison) that there is only one function F(x) that is analytic in x 
around x=0 and satisfies 

(3.3) F(0)=l, 

(3.4) F(x) = F(xq) + xqF(xq*). 

Clearly fm(x) is such a function. On the other hand, ingenious but ele­
mentary arguments involving only the rearrangements of series [31] 
allow one to establish that if 

fa) 
(3.5) _ ^ (-l)nx2nqni5n+l),2(l - xYn+i) 

then <£(0)=1, <f>{x) is analytic in x for | « |<1 , |x |< |^ | _ 1 , and <f>(x) satisfies 
(3.4). 
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Therefore <t>{pc)=^f^{x) for | # | < 1 , M < | # | - 1 . Hence 

^p(^;n)qn=Ml) = cf>(l) 

=2(- i ) n 4 n ( 5 w + 1 ) / 2 ( i - ^ 4 w + 2 ) / f l (! - 4w) 
v ;

 = T^T 1 (by Jacob's identity 
1 J ( 1 _ ^5n+l)(1 _ ^5n+4} [7> p p . 186-187]) 

= 2 V(F\ n)qn (by Theorem 2.1). 

Comparing coefficients in the extremes of this string of equations we see 
that/?(^;«)==/?(^;w) for each n, i.e. ^ ~ P T ^ \ Thus Theorem 3.1 is 
established. • 

The steps of the above proof may be analyzed as follows : 
1. Produce a functional equation (namely (3.4) for f<%(x)—a linear, 

second order ^-difference equation). 
2. Produce some ^-series representation of the essentially unique 

solution of the functional equation. 
3. Deduce the theorem from some ^-series and product identity like 

(3.6). 
This analysis applies to the vast majority of results that have been 

obtained in this area (see §§1,4, and 5 of PI for examples of this technique). 
The following two questions then naturally arise when one looks to 

how widely the above technique may be applied. 
Question 1. For what partition ideals C does 

fc(x;q)= J Xs V3*" 
{A>eC 

satisfy a finite linear ^-difference equation with polynomial coefficients ? 
Question 2. What finite linear ^-difference equations with polynomial 

coefficients (such as (3.4)) have solutions that can be represented by 
"higher-dimensional" ^-series ? 

Question 2 leaves (intentionally) vague the concept of ^-series. What one 
wants are solutions that are as amenable to manipulation and identity 
proving as the basic hypergeometric series studied by Bailey [16] and 
Slater [37]: 

Y {dun ' ' ' (ar)ntn 

where (A)n=(l—A)(l— Aq) • • • (1— Aqn~x). As we shall see in §6, pre­
sumably acceptable solutions would involve many-fold ^-series, i.e. higher-
dimensional ^-series and limiting cases thereof. F. H. Jackson's basic 
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Appell series [28] (see also [10]) provide examples of two-dimensional 
^-series. 

4. Linked partition ideals. The dissection of ^? into ^ U ^ 2 utilized 
in §3 to prove that fm(x) satisfies (3.4) may be extended to a wide class 
of partition ideals. We shall now present a series of new concepts which 
will allow us to define a linked partition ideal. We shall see in Theorem 4.1 
that for each linked partition ideal C,fc(x; q) satisfies a finite ^-difference 
equation with polynomial coefficients. 

DEFINITION 5. If C is a partition ideal, 

C<'> = {{fùeClf^fi =••• = ƒ, = 0}. 

DEFINITION 6. We denote by <p the bijection ^->^(1) given by 

(A 1 ï <P({fi)) = igi) w h e r e gi = ° if Ï = 1, 
( ' } =ƒ*-! i f i " > l . 

In intuitive terms, cp adds one to each part of each partition since 

00 00 

<<K{fi})) = 2fi-i • i = 2 Ad + i). 

DEFINITION 7. We say a partition ideal C has a modulus m if m is an 
integer such that <pmC=C(m). 

If we look back at §3, we see immediately that the least modulus for M 
is 1 and 2T has least modulus 5. 

DEFINITION 8. If C has a modulus, say m, and if the set 

Lc = {{ƒ} e C | / , = 0 for / > m} 

is finite, then we say that C is a locally finite partition ideal. 
Thus L<% is the two element set consisting of 0={0, 0, 0, • • •} and 

{1, 0, 0, 0, • • •}, while L^ is infinite and consists of all elements of SP of 
the form {m^ 0, 0, m2, 0, 0, 0, 0, 0}, where ^ ^ 0 , m 2 ^0 . 

It is clear that if C has a modulus, then for C to be locally finite it is 
necessary and sufficient that there exists an absolute constant M such that 
fi^M for all / whenever {/J e C. 

It is also clear that if m is the least positive modulus for C, then every 
modulus M is a multiple of m. This is because if M=km+r, 0 ^ r < m , 
then 

C = <p-MC{M) = cp-r(p-kmCiM) = (p-rc{M-km) = (p-r0r); 

hence r = 0 , otherwise the minimality of m is contradicted. Generally 
when we refer to the modulus of C, we shall mean the least positive 
modulus unless otherwise indicated. 
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DEFINITION 9. For each TT={f) e Sf, 7r<N=:{fi<N} shall denote 
{fnUU ' ' * >/N-I> °> 0, 0, • • •}, while ir^^if^} denotes {fl9 f2, 
U • • ' , f m 0, 0, 0, • • •}. 

DEFINITION 10. We write {/,}0{g<}={ƒ,+&}. 
DEFINITION 11. Suppose C is locally finite of modulus m. We shall say 

that 7T={/J G L c is linked with s/wz /=/(7r) if (1) / is the least positive 
integer such that {/J®ç>lm{gJ G C for some {gt} e Lc with {gJs^O, and 
(2) {ƒ•}©{/*,} G C whenever {AJ G C<« and {/;}©{A^(w.i,m} e C. We say 
C is linked if C is locally finite and every element of Lc is linked. 

DEFINITION 12. Suppose C is linked. For each 7TELC, we define a 
subset JSfoC77*) °f ^ c called the linking set for TT as those 7/ G L C such 
that7r©<pZ(7r)'m7r' G C . 

Returning to ^ we see that ^ is linked since 0 has span 1 and Jo?^(0)= 
Lg% while i = { l , 0, 0, 0, • • •} has span 2 and oSf^(i)=L^ also. 

THEOREM 4.1. If C is a linked partition ideal, then fc(x;q) satisfies 
a finite homogeneous linear q-difference equation whose coefficients are 
polynomials in x and q. 

PROOF. We begin by deriving several results about C from the fact 
that C is linked. First we know that C has at least one modulus, say m, 
for which we also know that the corresponding Lc is finite. Let K denote 
the cardinality of Lc, and we write Lo={7r0,7r1? 7r2, • • • , rrK_^), where 
7T0 = 0 . 

Next we define for each 7Tie.Lc 

H<(x)=2tx#(*V*') 
Tt' 

where 2 f r u n s o v e r a ^ ^' — ifù E C s u c h that {f^m}—7ri' We may now 
easily deduce several important relations for these functions. First 

(4.2) H0(x)= 2 x*iw)4oM =2x*Mq'M+m'#M=f(faqmiq). 

Next for each Tti e Lc, 

H4(x) = 2 x# (V (7r ) 

(4.3)i = x#(tr.)^a(».) 2 X#("V(*> 

= x^
{lTi) a°(lTt) V x#(ir*)^( f f*)+ï( f f , )m#(f f*) 

ff'k OTe-^?c( tri) I ff*eC 

= x#<»«y<»«> 2 # 3W ( ," ) , n ) . 
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Now the (4.3)i constitute a system of K ̂ -difference equations in the K 
functions H^x). All that remains (by (4.2)) is to show that this system 
may be reduced to a single ^-difference equation for H0(x). 

Here we shall rely on the anology with linear differential equations. 
In [30, Chapter 5, §5], Murray and Miller provide an algorithm for reduc­
ing a system of first order differential equations in yl9 • • • , yn to n 
higher order equations wherein they'th equation involves only j 5 . For our 
purposes the significant result lies in the first part of their Theorem 7 
[30, p. 129]: 

MURRAY-MILLER THEOREM. Every function y which is a component 
of the solution of 

n 

$i = 2 Pi*(*)y* + liW* j = 1, * • • , n, 

is a solution of a single linear differential equation of order r where r^n. 

On examination of the algorithm that is used to prove this theorem, 
we see that the differentiation operator may be replaced by any linear 
operator L on the field of functions analytic in some complex domain 
Q) subject to the restriction 

L(a(x)y) = %L(x)y + PL{x)Uy\ 

where OLL{X), PL(X) and a(x) all lie in the field of functions that contains 
the coefficients of the equations considered, and where pL(x)=0 if and 
only if tf(x)==0. 

When L=dldx, aL(x)=a(x) and ^ i (x)=a(x) . When L(f(x))=f(xq), 
then <x.L(x)=0 and f!h(x)—a(xq). 

MODIFIED MURRAY-MILLER THEOREM. Let J r = C ( x ) be the field 
of rational functions of the complex variable x. Let L be a linear operator 
subject to the above described conditions. Every function y which is part of a 
solution of 

(4.4) 
n 

Uyt) = 2 PnMyk + 4fc)> l£j£n, pjk(x) E^, qfa) E&. 

satisfies an equation of the form 
r 

2 sh(x)Û(y) - t(x), where r <* n9 sh(x) G ^ , t(x) E^. 

Furthermore if the q,{x) are all zero so are the t(x). 
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The final assertion in this theorem is easily deduced by examination of 
the algorithm used in the proof. 

For our purposes L will denote the operator given by L(f(x))=f(xqm)9 

0 < | # | < 1 . We must now transform the system (4.3)i into the form (4.4). 
First we write 

fc„(x) = H<(x"V'm), 0 ^ i <: K - 1, 0£j<œi9 

where <x>i is the largest value of a> such that H^xq™171) actually appears 
in the system (4.3)j (by (4.3)0 we see that c o ^ l always). The system 
(4.3)i is now equivalent to the following system of Q^WQ+CO^• • • + œK_1 

equations in Q, dependent variables h{j. 

(4.5) 
K <Ot—1 

£( /Wi) = K»t-i(M
m) = 2 2 *Uï> *)M*)> o^i^K-i, 

W*u) = hiti+u 0 ^ i ^ K - 1, 0 < 7 < o>, - 1, 

where the top system of equations in (4.5) is merely the (4.3X with x 
replaced by x^q-™1™. Since (4.5) is of the form (4.4), we see that Theorem 
4.1 follows. Furthermore the order of the implied «/-difference equation 
is ^ m ü . • 

To illustrate the workings of Theorem 4.1, let us return to f&(x\ #). 
In this case (4.3)0 becomes 

H»(x) = H0(xq) + H^xq), 
and (4.3)x becomes 

Hx(x) = xq(H0(xq*) + Hx(xq*)). 

Hence eliminating Hx from these equations, we find 

H0(x) - H0(xq) = xq*(H0(xq*) + H0(xq*) - H0(xq*)), 
or 

H0(x) = H0(xq) + xq*H0(xq*). 
Hence 

ƒ<*(*; q) =fa(xq; q) + xqfxixq2; q)-
In [2], H. L. Alder defined polynomials Gktfl(q) that have subsequently 

become known as the Alder polynomials. These polynomials may be 
defined by 

2 **( vU) - 2 Guitton* 
where &0,k.k**{{fi} e ^fi+f^^k-l). (The truth of this assertion 
follows from equations (5.2) and (5.15) in the next section after comparison 
with Alder's original definition.) 

The Alder polynomials have been found to be of number-theoretic 
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significance in [13]. We shall now show that any linked partition ideal 
has an associated family of Alder polynomials: 

THEOREM 4.2. Suppose that C is a linked partition ideal with a modulus 
m. Then there exists a family of polynomials An(C; m; q) {to be called the 
"Alder polynomials for C relative to m" or more briefly the C-Alder poly­
nomials) such that 

TreC w^O \Q > q )n 

PROOF. It is clear that the An(C, m; q) exist as functions of q since 
fc(xl q) is analytic in x around x=0 for |#|<1. The problem is to show 
that they are polynomials. Referring to the proof of Theorem 4.1, we 
define 

(4.6) H,(x) = y ünÜ; q)*n , 1 < j < K - 1, 

(4.7) Ho(x) = y^uK3: 

which is admissible since a0(0;q)=l, aQ(j;q)=0 for l^jrg/c—l, and 
an(j;q)=0forn<0. 

Furthermore when f=0 in (4.3)i? we see that 7r0=0, #(7r0)=0, a(770)=0, 
and every element of Lc is linked to TT0 with span 1. Hence (4.3)0 is just 

H0(x) = 2Hj(xqm); 
3=0 

therefore for n^.1, 

«.(0; q)qmn
 = g2mnan(0;q) fqmnanU;q) 

(qm;qm)n iqn\qm)n â(qm; qm)n-i' 
or 

(4.8) an(0 ;« )=§ f l nO;«) . 
3=1 

For i>0, we see from (4.3)i that for «>0, 

V" „l(TTi)m(n—#(irj)) an- #(ir,)0'î <?) = «*,") 2 <? 
(nm. nm\ *—* (nm' nm\ 
\H > H )n-l itieSeG{Ttl)\Ttj^it0 KO. > H )n-#bn)-l 

^<r(trt)+(l(iri)+l)w(n-#(7Ti))_ /r\. _\ 
<? flw_#(^)(U, q) + (<zw; qDn-mm) 
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or 
an\}> q) — °L 2* Q an-#M\J> q) 

#( i r , ) - l 
. I I M am(n—#(iTi)+h)\ 

(4-9) U 
i na(iri)+(l(iri)+l)m(n— #(ff»)),~ ((\. n \ 

+ q an-#(7Ti)VU5 q) 

. 1 T / I am(n—#(in)+h)\ 

It is now an easy matter to prove that the functions an(j; q) are all poly­
nomials and are uniquely determined by (4.8), (4.9), and the initial 
conditions a0(0;q) = l, a0(j;q)=0 for j>0, an(j;q)=0 for n<0. The 
initial conditions establish our assertion for n=0. Assume the result for 
n<nQ. Then for MO, we know #(7rt-)>0; hence the fact that anJj\q) is 
unique and a polynomial follows from (4.9) (note that if #(7rt-)>n0, 
then ono_#(fff)(/;gr)=0). For z=0, we now use (4.8) to establish the result 
for ano(0;q) and, therefore, to complete the induction. To conclude we 
note that (by (4.2)), 

v An(C; m; q)xmqm _ , , _ w . ^ _ „ M _ v an(0; <?)x™gw 

2 , — , w , ^ ^ x« ' « > - w ) - 2 , — ^ - ^ — ; 
hence ^4W(C; m; ^)=a n (0; 9) is a polynomial in q. D 

COROLLARY. The H3(x) are the unique functions analytic in x at x=0 
that satisfy the system (4.3)i and the initial conditions H0(0)=l, Hj(x)=0, 

PROOF. The uniqueness of the an(j;q) proved in Theorem 4.2 was 
derived using only the facts described in the Corollary. • 

5. Discussion of linked partition ideals. The linked partition ideals 
introduced in §4 appear in almost all of the partition identities of the 
Rogers-Ramanujan type. As a vehicle for discussion of Theorem 4.1 we 
state the most general identity known that contains the Rogers-Ramanujan 
identities as a special case [14]. 

THEOREM 5.1. Let O^X^a^k be integers. If A is even, let AXtkta(n) 
denote the number of partitions of n into parts such that no part ^0 
(mod A+l) may be repeated and no part is = 0 , 

±(a - %X)(X + 1) (mod(2Â: - X + 1)(A + 1)). 

If X is odd, let AXka{ri) denote the number of partitions ofn into parts such 
that no part =jêQ (mod^(A+l)) may be repeated, no part is =A+1 
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(mod2A+2), andnopartis = 0 , ±(2a—X)\(X+\) (mod(2À;-A+l)(A+l)). 
Let BXtka(ri) denote the number of partitions of n of the form b1 + - • *+b89 

with bi^bi+1, no parts ^ 0 (modA+1) are repeated, &,—èm_!^:A+l 
with strict inequality /ƒ (A+l)|è, and at most a—I parts are ^ A + l . Then 
Ax,k.a(n)ssBJL.k.a(n)for each n. 

REMARKS. The above theorem may be easily phrased in terms of 
partition ideals. Namely, let 

/ I A A + l 

«A.* . . = {ƒ<} e^\2fm+i^k-l and £ ƒ«<*-»+, ^ fe - 1 

for each m ^ 1,/i + • • • + fx+1 ^a — 1, and ƒ, > 1 implies (A + 1) | i , 

^2A.fc.a = {{ƒ,} e ^ | ƒ, > 1 implies (2A + 1) | i; and/, > 0 implies 

i & 0, ±(a - A)(2A + 1) (mod(2/c - 2A + 1)(2A + 1))}, 

•^2A+I.*.« = {{/J e ^ | ƒ, > 1 implies (A + 1) | Î; ƒ, > 0 implies 

i je 2A + 2 (mod 4A + 4) and i ^ 0, 

±(2a - 2A - 1)(A + 1) (mod(2/c - 2A)(2A + 2))}. 

Then Theorem 5.1 is equivalent to sé' Xka ~VT â§kk a provided O^À^a^k. 
The first Rogers-Ramanujan identity is the case A=0, k=a=2. The 

second Rogers-Ramanujan identity is the case A=0, A;=2, a=l. Theorem 
5.1 contains a number of other well-known partition identities as special 
cases; a weaker form of this theorem which stipulates fc^2A—1 is dis­
cussed in §1 of PI and proved in [6]. 

It is easy to show that â$xtktk is a linked partition ideal with least modulus 
A+l and that L<%À>ktk is a set consisting of 

(X\ „ ^ /A „ *JX\ 
K = k + (k- l ) ^ j + (A: - 2 ) Q + • • • + (k - A ) ^ j - 2"~\2k- A) 

elements. Furthermore the span of each element is at most 2 so that in 
terms of Theorem 4.1 the order of the resulting ^-difference equation is 
at most (A+l)-2-2 ; i-1(2fc-A)=(A+l)2 ; i(2fc-A). In order to prove 
Theorem 5.1, much more subtlety is required than is available from a 
direct application of Theorem 4.1, and in fact a system of ^-difference 
equations is obtained from which it is possible to deduce a single one of 
order A:(A+1) for f<%Xktk(x;q). The technique of proof relies on cutting 
the number of auxiliary functions down from K=2x~1(2k—X) to 2k + 1 . 
In fact, in most interesting special cases, the relevant ^-difference equation 
will have a much lower order than the upper bound given in Theorem 4.1. 
Below we outline the general proof of Theorem 5.1. The details of this 
work will appear in [14]. 
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SKETCH OF PROOF OF THEOREM 5.1. We begin with functions that 
correspond to <f>(x) defined in equation (3.5): 

^ / v \ (--**?)oo V / i\n„kn„(A+l)((2k-A+l)n2+(2k-2i+l)n)/2 

( } (1 - x y ^ ' ^ ' X x V ^ ; q2X+\(-q)Xn+n 

,,, / v \ (""x^)oo V / i\n„knn(A+l)((2k-X+l)n2+(2k-2i+l)n)/2 

\ x H •> H Joo n=0 

(52. (xVX+2;q2"+\(-q)a+1)n 

' } (q2X+2;q2X+\(-xq),n+n 
,i_(A+l)(2n+l)(2*-A)/2/ nÀn+n+l\ 

( %i (A+l)(2n+l)(2*-A)/2/ An+rc+l\ \ 

where ( a ; ^ ) n = ( ö ) n = ( l - ö ) ( l - ^ ) • • • ( l - a ^ - 1 ) , and (a;q)O0 = (a)O0 = 

Note that (p0)2i2(i)=y0i2i2(x) = (p(x). 
It is possible to prove that these functions satisfy the following relations: 

(5.4) n,Ux) = 2 *v n.k.i-iW' 

(5.3) ?>*.*.<(*) ~ ^ , u - i W = (V+1rVA,fc.fc-m(*^+1); 
^(i+l)/2p 

5=0 U -

(5.5) Ç>A.*.-<(*) = - ( * 4 A + 1 ) ~ V A , U * ) > 

where 

(5.6) 
(<?)A , O ^ j ^ A , 

(^)X^)A-,-

= 0, otherwise. 

Utilizing Jacobi's triple product identity [7, pp. 169-170], one may 
easily deduce from (5.2) that 

VX.UQ =(-«)»(«2A+2; q2X+2r:(lU-m)U+1); q ^ ^ X 
/ (2fc-A/2-t+l)(A+l). (2fc-A+l)(A+l)\ / (2fc-A+D(A+l). (2fc-A+l)(A+lh 

(5.7) 

n=0 

On the other hand, we may define generating functions related to the 
partition ideals â9kthta. Namely 

(5.8) ' w * ) = 2 x#<wy,<",), 
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and 

(5-9) W x ) = 2 *?m)q'{<ft)) (where U-SA} = 0). 

It is a straightforward matter to prove that 

(5.10) fcw§a(x) - hXM(x) = (xq^y-'j^^xq^1), 

a perfect replica of (5.3). 
Surprisingly instead of a replica of (5.4), the following relation holds. 

"A.fc ,a-A x ) J W * ) = 2 * V Ü + 1 ) / 2 

(5.11) '= 0 l 

+ 2 (-DJ_12 g(';k' *>r, «; *; «)^.*.xWw,"+1)), 
i ^ 2 r=0 

where 

(5.12) 

g(/; fc, A, r, a ; x ; <?) 

V 

• q 
(2^L-EZ»(S^-IZ>+l)/2 "̂ 1 

-A-J 2 4 - E Z > 

with S .4=,4 0 -MH Mi+i> SZ)=D 1 + l-A-i» and # is the set 
of those (21— l)-tuples (<40, Au • • • , Ax_x, Dx, • • • , Dt_^) that satisfy 
A^+k-D^i-l, Al_1=Dl_1-r, O^A^X, l£D,£k, Q£A&D„ 
A&Di+Dw-k-l. 

From these ^-difference equations (5.8)-(5.11), it is possible to deduce 
that 

<Px.M = hx.Ux) + 2 ( - 1 ) ' " 1 ! K*AM(l-1HW))y(l\ k, A, r, i; x; q), 

with 

y(l; k,À9r, i;x;q) 

(5-13) = (i-my azfe\(k-DrtM)tu+i)+Db(Db+i)/i[ ^ 1 T ̂  1 . . . f * 1 

v LDJIAJ LA-J' 
where 3f is the set of those (2/—2)-tuples (Al9 • • • , At_u Dl9 • • • , Z)j_i) 
that satisfy D a + ' - ' + D ^ - ^ ! -A^^i-k-r-l, l^D^k.A^^ 
D^—r, O^A^Dj, A^Dj+Dj+i—k—1 (when / = 2 , ^ is to be defined 
by — D^i—k—r— 1, ^ ^ Z ^ — r ) . It turns out that 

(5.14) y(l; k, %,r,i;x;q) = 0 for 0 ^ i ^ fe — A + 1-
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Hence for À^a^k, 

JA.k.a(x) = xr^XhxM-a+^xq-*--1) - ^.^(xtf"*""1)) 

(5.15) = x-^Xn^^xq-*-1) - tpx^xq-™)) 

= n.k.a(x)-
Consequently, 

2 AX,k,a(n)qn = Jx.k.aW = V>X.kM) 

(5-16) = 2 4"™-iBtjjw. 

Comparing coefficients of qn in the extremes of (5.16), we find that 
A*,k,a(n)=Bx,k,a(n) f o r e a c h n> provided X^a<n. 

This concludes our sketch of the proof of Theorem 5.1. • 
The above work should make clear that the establishment of Theorem 

5.1 relies on a lot of detailed results other than those implied by Theorem 
4.1. In particular the polynomials g(l; k, A, r,i;x;q) and y (I; k, À, r, i; x;q) 
undergo extensive consideration in [14] before one can represent them as 
sums of products of Gaussian polynomials [£]. 

Thus while Theorem 4.1 tells us that all linked partition ideals are 
amenable to attack via ^-difference equations, it tells us nothing about 
what sorts of analytic representations (like (fx,k,a(x) a n d Vx.k.a(x)) a r e 

needed in order to establish new partition identities. 
Before closing our discussion of Theorem 5.1, we remark that in 

[14] the result is generalized to include parameters satisfying XjKa^k, 
À^k; in fact this generalization appears in [6] subject to the extra con­
dition k^.2À—1. Also the following conjecture is raised in [14]. 

CONJECTURE. A^t3t3(n) = Bl>3>3(n)=p(^°; n), where 

^ ° = {{ƒ,} e Se I fi+fi+1 + .. • + fj+, <: 2,f5j + / w + 1 + • • • +/W + B ^ 2, 
/ ö i - 3 + J5J-2 = 1> f5j-l + J5J+1 = 15 fbj-l + fbj +/M+5 + J5J+6 = 3 

for y ̂  1, and fm > 1 implies 5 | m). 

This conjecture has been verified for «^59 where ^4>3>3(59)=i?J)3,3(59)= 
2938. 

This problem seems to lie beyond the scope of the techniques introduced 
in [14], and if it is true, its proof should provide valuable insights and 
techniques for the theory of partition identities. 

6. Representations of solutions of ^-difference equations. Now we 
turn to Question 2 (stated at the end of §3), an aspect of this study where 
relatively little is known, and no truly general theorems like Theorem 4.1 
are available for guidance. 
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We begin by remarking that if we expand the F(x) defined by (3.3) 
and (3.4) into a power series in x, say IUwxn, we find directly that A0=l 
and (l-qn)An=q2n~1An_1. Hence 

qnxn 

(6.i) m = 2 , , 

Comparing (6.1) with (3.5), we obtain an analytic identity: 

y 4 n V y ( - 1)V^n(5n+l)/2(1 _ x y *H-«) 

(«) (<?)nO<?W+ )oo 

Thus two very different ^-series representations of the solution of (3.4) 
are available to us. 

In the same vein, one can prove that 

2m 2m2/ 2m+l\ 

VoM = 2 , , 2? ~ 0 . Theorem 8, p. 433] 
™S<> (q ; q )m 

3m 3m2/ 3 6m+3. 3\ 

n-Ux)=V<X£<*tA [3; Theorem 9> p-444L 

~ / ^ — V V ^ \~~l) \XCL JQQ* r i - - , 
9V5.5W - Z Z / - 4 . _4x / a. _2x /Y4_8n+8;+4. ^ L15J' 

Other series representations of <Pxtkii(x) and ^(fcii(x) have been found; 
however in all cases (2k—À+l)(À+1)^64, and in these cases the only 
prime factors of (2k—A+1)(A+1) are 2, 3, 5, 7 (apart from the case 
A=0, 2fc+l = ll mentioned above and treated in [15]). These results are 
all (with the exception of [15]) to be found in the work of W. N. Bailey 
[16], [17], [18] and L. J. Slater [35], [36], [37]. To date the methods 
employed seem of limited scope as Slater's cataloging of known results 
includes only 130 identities. 

Unfortunately most of the classical investigations of ^-difference equa­
tions were concerned with existence theorems given specified analyticity 
conditions on the coefficients [1], [20], [21], [33]. We, however, have 
polynomial coefficients and already know that a unique solution exists 
given our simple boundary conditions. Our concern is not with the exist­
ence of a solution but with an appropriate representation of the solution. 

Presumably the work of W. Hahn [25], [26], and F. Ryde [33], as 
well as the extension of Bailey's techniques contained in [15] may point 
the way to progress in this area, but much remains to be done. 

7. Conclusion. I hope that this paper has given some indication 
of what has been done and what remains to be done in the theory of iden­
tities of the Rogers-Ramanujan type. 
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Obviously a project that holds promise of rather immediate positive 
results is that of examining linked partition ideals C with modulus ^Ml9 

all spans ^ M 2 and \LC\^MZ. Clearly the number of such C is finite, 
and this systematic approach promises to reveal C with related ^-difference 
equations of reasonably low order. 

More important for the general goals, one hopes to make advances on 
the analytic questions considered in §6. 

Before concluding, we should point out that not all of the known 
theory of partition identities falls into the theory of linked partition 
ideals. 

In particular, the theorems in [4] are not related to linked partition 
ideals except in the special case of Schur's theorem [34]. However exami­
nation of these results and comparison with the results in [5] suggest 
that a "dual" theory could be developed wherein ^-recurrent sequences 
would replace ^-difference equations. 

There have been, however, other theorems developed that are definitely 
partition identities but do not at all concern an equivalence of partition 
ideals. 

Frobenius [23, p. 523] introduced a notation for partitions that is 
especially useful here. He writes a partition TT as 

/al9a2, - - • , ar\ 

\bl9b2, • • • , br)
9 

where TT has Durfee square of side r (see [27, p. 281] for discussion of the 
Durfee square), and where there are ^ nodes to the right of the main 
diagonal in the ith row of the Ferrars graph representation of TT and bi 

nodes below the main diagonal in the /th column of the Ferrars graph 
representation of TT. For example, if TT is 5 + 5 + 4 + 4 + 2 + 1 + 1 (in 
^ { 2 , 1, 0, 2, 2, 0, 0, 0, • • •}), then the Ferrars graph is 

and the Frobenius representation is 

/ 4 , 3 , 1,0\ 7 4 , 3 , 1 , (A 

\6,3,l,oJ' 
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We now define Fmax(7r) and Fmin(7r) to be max(^—bt) and min(at—&<), 
respectively. The following theorem then holds [11], [12]. 

THEOREM 7.1. Let Qk,a(n) denote the number of partitions TT ofn such 
that -a+2^Fmin(rr)^Fm&x(7T)<2k-a-l. Then Qk,a(n)=A0tk>a(n) for 
all n. 

It is not difficult to show that the Rogers-Ramanujan identities are equiv­
alent to this result in the cases k=2, a=2, 1. However all aspects of the 
multiple result 

Qk,a(n) = ^o.fc.aO) = Boka(n) 

(implied by Theorem 5.1) are mostly unexplored for k^.3. One could 
introduce a new lattice structure on partitions by the partial ordering 
TTX^TTZ if all the columns in the Frobenius representation of irx appear in 
the Frobenius representation of TT2. Where such an approach would lead 
concerning partition identities has not been investigated at all. 

Still other partition functions Hka(n) have been found [13] such that 
^ i f l(n)=i40)) t ia(n); here a study is made of the Alder polynomials Gkta(n; q) 
defined by 

Finally, we mention that W. Connor [22] has obtained infinite families 
of partition identities also unlike any of the previously mentioned results. 
Connor's most important theorem in the simplest instance is a new set of 
partition-identities related to two elegant analytic theorems originally 
due to L. J. Rogers [32] but put in their most interesting form by Connor: 

2 

oo nn +n oo 

<7-D Ihr= n (i-aT1; 
w=0 \£l)2n w=l;n#±l,±8,±9,10(mod20) 

oo ~n2+n oo 

(7.2) Jf- : O d-«TX. 
w=0 W / 2 n + l n=l;w#±3,±4,±7,10 (mod 20) 

Connor's partition identity related to (7.1) is the following: 
THEOREM 7.2. Let A(n) denote the number of partitions ofn into parts 

^ 0 , ± 1 , ± 8 , ± 9 , 10 (mod 20). Let C(n) denote the number of partitions 
of n into parts where even parts may not be repeated and where odd parts 
occur only if an even part one unit away occurs. Let E(n) denote the number 
of partitions ofn of the form b1+b2+- • '+bs, where s is even and b1^.b2> 
6 8 è*4>*5^- ' ' • Then A(n)=C(n)=E(n). 
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We note that the identity 

2E(n)qn=JiA(n)qn 

is rather directly deduced from (7.1); however, the appearance of C(n) 
in Theorem 7.2 is a complete surprise. While A{ri) is related to a partition 
ideal, neither C(n) nor E(n) is. Identity (7.2) produces a perfect companion 
for Theorem 7.2. B. Gordon [24] has also proved several interesting 
theorems of this type. 

It might be supposed that we are concluding on a disappointing note. 
Theorem 4.1 suggests that we may see the beginnings of order amidst 
chaos, and so the last few paragraphs tend to suggest otherwise. However 
perhaps a subject seems most vital when (1) general methods are available 
to begin the attack on numerous problems while (2) other problems and 
results indicate that many quite unexplored areas remain. 
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