GLOBAL BIFURCATION THEOREMS FOR NONCOMPACT OPERATORS

BY JOHN MACBAIN

Communicated by Michael Golomb, February 24, 1974

1. Introduction. The first general existence theorem for bifurcation points was obtained by Krasnoselski [1]. He considered the equation $u=\lambda Lu+H(\lambda,u)$ in a real Banach space $\mathscr B$ where L and H are compact, and H is $o(\|u\|)$ uniformly on each bounded λ interval for small u. In this situation he proved that if λ is a characteristic value of L having odd multiplicity, then $(\lambda,0)$ is a bifurcation point in $R\times\mathscr B$. Much more recently, Rabinowitz [2] considered the same problem and, using a Leray-Schauder degree argument, obtained a two-fold alternative for the global behavior of these bifurcation branches.

This paper extends the results of Krasnoselski and Rabinowitz to a much larger class of operator equations. First to be considered is the equation

$$(1) Lu = \lambda u + H(\lambda, u)$$

in a real Hilbert space \mathcal{H} , where H is as above and L is selfadjoint (bounded or unbounded). In this case, each isolated eigenvalue of L having odd multiplicity is a bifurcation point possessing a continuous branch. Moreover, an alternative theorem on the global behavior of these branches is obtained

By use of similar arguments these results for selfadjoint operators are extended to a general class of linear operators in a real Banach space \mathcal{B} .

2. The selfadjoint operators. In this section all work is in a real Hilbert space \mathscr{H} , L is a selfadjoint operator taking \mathscr{H} into \mathscr{H} , and $H(\lambda, u)$ is a compact operator taking $R \times \mathscr{H}$ into \mathscr{H} that is $o(\|u\|)$ uniformly on each bounded λ interval for small u.

Let $\mathscr E$ denote $R \times \mathscr H$ with the product topology. For $\mathscr V \subset \mathscr E$, a subcontinuum of $\mathscr V$ is a subset of $\mathscr V$ which is closed and connected in $\mathscr E$. The trivial solutions of (1) are the points $(\lambda, 0)$, and all other solutions are called nontrivial. Let $\mathscr S$ denote all nontrivial solutions of (1), and let $\mathscr E_{\lambda_0}$ denote the maximal subcontinuum of $\mathscr S \cup (\lambda_0, 0)$ containing $(\lambda_0, 0)$.

AMS (MOS) subject classifications (1970). Primary 47H15, 46N05. Key words and phrases. Nonlinear operator equations, bifurcation.

For a subset A of R, \mathcal{H} , or \mathscr{E} , $\mathrm{Cl}(A)$ denotes its closure in the respective space. For $A \subseteq \mathscr{E}$, A_R denotes $\{\lambda | (\lambda, u) \in A \text{ for some } u\}$, and $A_{\mathscr{H}}$ denotes $\{u | (\lambda, u) \in A \text{ for some } \lambda\}$. By an isolated eigenvalue λ of L, we mean that λ is an eigenvalue of L and $\mathrm{dist}(\lambda, \mathrm{sp } L \setminus \lambda) > 0$.

The following lemma is stated without proof.

Lemma 1. Suppose λ_0 is an isolated eigenvalue of L having finite multiplicity. Assume \mathscr{C}_{λ_0} is bounded, $\mathrm{Cl}((\mathscr{C}_{\lambda_0})_R) \cap \mathrm{ess} \operatorname{sp} L = \varnothing$, and $\mathscr{C}_{\lambda_0} \cap \{R \times \{0\}\} = (\lambda_0, 0)$. Then \mathscr{C}_{λ_0} is compact and there exists a bounded open set $\mathscr{O} \subset \mathscr{E}$ such that $\mathscr{C}_{\lambda_0} \subset \mathscr{O}$, $\partial \mathscr{O} \cap \mathscr{S} = \varnothing$, $\mathrm{Cl}((\mathscr{O}_R)) \cap \mathrm{ess} \operatorname{sp} L = \varnothing$, the only trivial solutions contained in \mathscr{O} are points $(\lambda, 0)$ where $|\lambda - \lambda_0| < \varepsilon$ for some $\varepsilon < \varepsilon_0 = \operatorname{dist}(\lambda_0, \operatorname{sp} L \setminus \lambda_0)$, and $\operatorname{dist}(\partial \mathscr{O}, \{\operatorname{sp} L \times \{0\}\}) \ge 2\varepsilon_1$ for some positive ε_1 .

REMARK. The theorem below will show that the hypotheses of the preceding lemma imply that λ_0 is an eigenvalue of even multiplicity.

Theorem 1. Let λ_0 be an isolated eigenvalue of L having odd multiplicity. Then

- (i) \mathcal{C}_{λ_0} is unbounded, or
- (ii) \mathscr{C}_{λ_0} is bounded and $\mathrm{Cl}((\mathscr{C}_{\lambda_0})_R) \cap \mathrm{ess} \ \mathrm{sp} \ L \neq \emptyset$, or
- (iii) \mathscr{C}_{λ_0} is compact, $\mathrm{Cl}((\mathscr{C}_{\lambda_0})_R) \cap \mathrm{ess} \, \mathrm{sp} \, L = \emptyset$, and \mathscr{C}_{λ_0} contains trivial solutions other than $(\lambda_0, 0)$.

PROOF. Let us define $\Phi(\lambda, u) = Lu - \lambda u - H(\lambda, u)$. In general, degree theory cannot be applied to such an operator. Under the hypothesis on L we will show how Φ can be replaced by a compact perturbation of the identity, thus allowing the use of degree theory.

Assume that none of (i), (ii), and (iii) occurs. Then by Lemma 1 we find a bounded open set \mathcal{O} , $\varepsilon > 0$, and $\varepsilon_1 > 0$, such that $\mathscr{C}_{\lambda_0} \subset \mathcal{O}$, $\mathrm{Cl}((\mathcal{O}_R)) \cap \mathrm{ess} \ \mathrm{sp} \ L = \varnothing$, $\partial \mathcal{O} \cap \mathcal{S} = \varnothing$, $\mathrm{dist}(\partial \mathcal{O}, \{\mathrm{sp} \ L \times \{0\}\}) \geq 2\varepsilon_1$, and the only trivial solutions to (1) in \mathcal{O} are points $(\lambda, 0)$ satisfying $|\lambda - \lambda_0| < \varepsilon < \varepsilon_0$, where $\varepsilon_0 = \mathrm{dist}(\lambda_0, \mathrm{sp} \ L \setminus \{\lambda_0\})$.

Select a neighborhood N of ess sp L which contains $\operatorname{Cl}((\mathcal{O}_R))$ in its exterior, and let $\mu_0 \notin \operatorname{Cl}((\mathcal{O}_R))$ be in the resolvent set. Let \mathscr{H}' denote the maximal closed subspace for which $L\mathscr{H}' \subseteq \mathscr{H}'$ and sp $L | \mathscr{H}' = \operatorname{sp} L \cap N$, and let P be the projector onto \mathscr{H}' . Define the linear operator L_0 by

$$L_0 = (L - \mu_0 I)(I - P).$$

 L_0 is clearly compact. Furthermore, $\lambda \notin N$ is an eigenvalue of L having multiplicity m if and only if $\lambda - \mu_0$ is an eigenvalue of L_0 having multiplicity m. For $\lambda \notin \{\mu_0\} \cup N$ we define

$$G_{\lambda} = (\lambda - \mu_0)^{-1} [L_0 + (I - P)(-H(\lambda, u))] + (\lambda - L)^{-1} P(-H(\lambda, u)).$$

From the definition of P it follows that (1) is equivalent to

$$(2) u = G_{\lambda} u$$

for λ in a neighborhood of $\mathrm{Cl}((\mathcal{O}_R))$. The linear part of G_{λ} is compact and the linear part of G_{λ_0} has the eigenvalue 1 with multiplicity m_0 if and only if L has the eigenvalue λ_0 with multiplicity m_0 . The nonlinear part of G_{λ} is also compact and in norm is $o(\|u\|)$ for small u.

(2) is the form necessary for the use of Leray-Schauder degree theory. Applying this theory as Rabinowitz [2] did shows that one of (i), (ii), or (iii) must occur.

REMARK. If the multiplicity of λ_0 is odd, Theorem 1 guarantees that λ_0 is a bifurcation point with a continuous branch \mathscr{C}_{λ_0} .

COROLLARY 1. Let λ_0 be an isolated eigenvalue of L of finite multiplicity which is a bifurcation point with continuous branch λ_0 . Then

- (i)' \mathcal{C}_{λ_0} is unbounded, or
- (ii)' \mathscr{C}_{λ_0} is bounded and $Cl((\mathscr{C}_{\lambda_0})_R) \cap \text{ess sp } L \neq \emptyset$, or
- (iii)' \mathscr{C}_{λ_0} is compact, $Cl((\mathscr{C}_{\lambda_0})_R) \cap \operatorname{sp} L = {\hat{\lambda}_0, \lambda_1, \dots, \lambda_n}$ and the sum of the multiplicities of the eigenvalues $\lambda_0, \lambda_1, \dots, \lambda_n$ is even.

We now consider

(3)
$$Lu = \lambda Ku + H(\lambda, u),$$

where K is positive definite and bounded and L, H are as above.

COROLLARY 2. Let R be the positive square root of K. Let λ_0 be an isolated eigenvalue of $R^{-1}LR^{-1}$ of finite multiplicity which is a bifurcation point of (3) with a continuous branch \mathcal{D}_{λ_0} . Then

- (i) \mathcal{D}_{λ_0} is unbounded, or
- (ii) \mathcal{D}_{λ_0} is bounded and $Cl((\mathcal{D}_{\lambda_0})_R) \cap ess sp(R^{-1}LR^{-1}) \neq \emptyset$, or
- (iii) \mathscr{D}_{λ_0} is compact, $Cl((\mathscr{D}_{\lambda_0})_R) \cap sp(R^{-1}LR^{-1}) = \{\lambda_0, \lambda_1, \cdots, \lambda_n\}$ and the sum of the multiplicities of the eigenvalues $\lambda_0, \lambda_1, \cdots, \lambda_n$ (of $R^{-1}LR^{-1}$) is even.

If the multiplicity of λ_0 is odd, then $(\lambda_0, 0)$ is a bifurcation point possessing a continuous branch.

3. General operators. We now generalize by considering a real Banach space \mathcal{B} and linear operators $T: \mathcal{B} \rightarrow \mathcal{B}$. The equation being studied is

(4)
$$Tu = \lambda u + H(\lambda, u)$$

with H as before.

Theorem 2. Suppose λ_0 is an isolated eigenvalue of T of odd multiplicity and

- (a) to every closed interval $\sigma \subseteq R \setminus \text{ess sp } T$ containing λ_0 there is a compact projector Q_{σ} that commutes with T, and λ_0 is an isolated eigenvalue of $T|Q_{\sigma}\mathcal{B}$ of odd multiplicity,
 - (b) the restriction of $T-\lambda I$ to $(I-Q_{\sigma})\mathcal{B}$ is invertible for $\lambda \in \sigma$.

Then $(\lambda_0, 0)$ is a bifurcation point possessing a continuous branch \mathcal{C}_{λ_0} such that

- (i) \mathscr{C}_{λ_0} is unbounded, or
- (ii) \mathscr{C}_{λ_0} is bounded and $\mathrm{Cl}((\mathscr{C}_{\lambda_0})_R) \cap \mathrm{ess} \ \mathrm{sp} \ T \neq \emptyset$, or
- (iii) \mathscr{C}_{λ_0} is compact, $(\mathscr{C}_{\lambda_0})_R \cap \operatorname{sp} T = \{\lambda_0, \lambda_1, \dots, \lambda_n\}$ and the sum of the multiplicities of the eigenvalues $\lambda_0, \lambda_1, \dots, \lambda_n$ is even.

PROOF. The proof is similar to that of Theorem 1.

COROLLARY 3. Suppose λ_0 is an isolated eigenvalue of T of odd multiplicity and for every closed interval $\sigma \subset R \setminus S$ sp T containing λ_0 , T can be uniformly approximated by operators T_ε which are of the type treated in Theorem 2 and such that sp $T_\varepsilon \cap \sigma = Sp T \cap \sigma$ up to multiplicity of eigenvalues. Then the results of Theorem 2 hold for T and \mathcal{C}_{λ_0} .

Our work necessitates the use of a complexification of \mathscr{B} which is denoted by $\hat{\mathscr{B}} = \mathscr{B} \times \mathscr{B}$. The general element of $\hat{\mathscr{B}}$ is

$$(x, y) = x + iy$$
 and $||(x, y)||_{\hat{\mathscr{B}}} = (||x||^2 + ||y||^2)^{1/2}$,

where $\|\cdot\|$ is the norm in \mathscr{B} . For any linear $T:\mathscr{B}\to\mathscr{B}$, $\hat{T}:\hat{\mathscr{B}}\to\hat{\mathscr{B}}$ is its unique linear extension to $\hat{\mathscr{B}}$.

THEOREM 3. Let T be a bounded linear operator and σ be a compact subset of $R \setminus \operatorname{ess} \operatorname{sp} \widehat{T}$. Then there is a bounded projector Q_{σ} that commutes with T such that the restriction of $T - \lambda I$ to $(I - Q_{\sigma})\mathcal{B}$ is invertible for $\lambda \in \sigma$ and $Q_{\sigma}\mathcal{B}$ is the span of the principal manifolds belonging to eigenvalues of T in σ .

PROOF. The first step is to go to the complexifications \hat{T} and \mathcal{B} . A decomposition theorem [3] is applicable to this complex case. From this complex decomposition, we can derive suitable real projections from \mathcal{B} into \mathcal{B} and their corresponding subspaces in \mathcal{B} .

REMARK. It follows from this theorem that Theorem 2 holds for all bounded linear operators T on \mathcal{B} for which $R \cap \text{ess sp } \hat{T} = \text{ess sp } T$. In particular this is true if T is compact, or if \mathcal{B} is a Hilbert space and T is selfadjoint.

REFERENCES

- 1. M. A. Krasnosel'skii, Topological methods in the theory of nonlinear integral equations, GITTL, Moscow, 1956; English transl., Macmillan, New York, 1964. MR 20 #3464; 28 #2414.
- 2. P. H. Rabinowitz, Some aspects of nonlinear eigenvalue problems, Rocky Mountain J. Math. 3 (1973), no. 2, 161–202.
- 3. F. Riesz and B. Sz.-Nagy, *Leçons d'analyse fonctionnelle*, 2nd ed., Akad. Kiadó, Budapest, 1953; English transl., *Functional analysis*, Ungar, New York, 1971. MR 15, 132.

Department of Mathematics, Purdue University, West Lafayette, Indiana 47907

Current address: Air Force Institute of Technology, Wright-Patterson Air Force Base, Dayton, Ohio 45433