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1. Introduction. This note is a sequel to [5] ; the notations are the same. 
An important property of the Moore-Penrose inverse Tf of a matrix, 
or a bounded linear operator, or a densely-defined closed linear operator 
Ton a Hubert space is the relation of Tf to extremal solutions of the equa­
tion Tu=y (see [2], [4], [7]). We develop proximal properties of gen­
eralized inverses in normed spaces within the general setting of [5] and 
demonstrate their relations to extremal, minimal, and best approximate 
solutions. 

2. Preliminaries. Let N be a normed linear space. Let sp A denote 
the span of a set A and d(x, A) the distance from x to A^ N. The following 
definition of orthogonality is used: x_]_y means d(x, sp{j})=||.x;||, and 
BA_A means d(x, A)=\\x\\ for each xeB. Note that this orthogonality 
is not a symmetric relation. Let M be a subspace of N which has a topo­
logical complement, and consider the affine manifold 0>M={P e JS?(TV): 
P 2 =Pand^(P)=M}. 

PROPOSITION 1. Let P0 e £PM. The following statements are equivalent: 
(a) P0 is the nearest point in &M to 7, and ||J—P0\\ = 1. 
(b) ^OPoUWo). 
(c) For each xe N, PQx is the nearest point in M to x. 

If there exists a P0 e 3P'M such that any (and hence all) of the statements 
in Proposition 1 hold, we say that M is an orthogonally-complemented 
subspace of N. We emphasize that if M=&(P0) is orthogonally comple­
mented by J^(P0), it is not necessarily true that ^T(P0) *s orthogonally 
complemented by ^(P0)- Also, orthogonal complements are not neces­
sarily unique. Hubert spaces are an exceptional case; if M is a closed 
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subspace of a Hilbert space, then M1- is the unique orthogonal complement 
of M in the above sense, and also ML has M as an orthogonal comple­
ment. In this case the corresponding projectors will be selfadjoint. Finally 
we remark that in a normed linear space every one-dimensional subspace 
is an orthogonal complement for some hyperplane, for let 5'=sp{^}, 
H = l. Take (by the Hahn-Banach theorem) ƒ e N* with ||/ | | = 1 and 

f(e)=l. Define P by Px=x-f(x)e. Then &(P)=jT(f) and | | / - P | | = 1. 
In general, in normed linear spaces, orthogonally-complemented sub-
spaces are rare. 

3. Main results. Let A(F, W) denote the space of all linear maps 
from a vector space V into a vector space W. If Te A(V, N2) where N2 

is a normed space, then v0e Fis called an extremal solution of the equation 
Tv=y if ^=^ 0 minimizes ||Tv—y\\. If V—Nx is also a normed space, then 
an extremal solution of minimal norm is called a best approximate solution 
or a least extremal solution. The equation Tv=y need not have an extremal 
solution for each j , and the existence of an extremal solution does not 
imply the existence of a best approximate solution. 

DEFINITION 2. Let N2 be a normed linear space, and let Te A(F, N2). 
If U=Tr\Q is a R-T.P.I. of T where | | / - f i | | = l, we call U a right-
orthogonal partial inverse (abbreviated as R-O.P.I.) of T. On the other 
hand, if 3)(T)— V is contained in a normed linear space Nl9 2&(T) is in 
a (algebraic) vector space W, and U=TlP is a L-T.P.I. of T, where 
||ƒ—P|| = l, we call U a left-orthogonal partial inverse (L-O.P.L). If U is 
both a L-O.P.I. and a R-O.P.I. we call U an orthogonal partial inverse 
(O.P.I.) of T. 

Note that by Proposition 1, the existence of a R-O.P.I. implies that 
é%(T) is an orthogonally-complemented subspace of N2. Also, the existence 
of a L-O.P.I. implies that ^P(T)A_J^(T) since J/ (P)\_0l(P) by Propo­
sition 1 and since Jf(T)czâl(P) and %P(T)c:jr(P) by [5, Theorem 2.4, 
Definition 2.2]. Thus, in general, the existence of an O.P.I, is a rare 
phenomenon in normed spaces without inner products. 

If N2=H2 is a Hilbert space, there is a unique Q with range 0l(T) 
satisfying | | / - Ô | | = 1. Thus for TeA(V,H2), a R-O.P.I. always exists. 
If jv 1 =/ / 1 is also a Hilbert space, then T has an O.P.I, if and only if T 
is decomposable with respect to a selfadjoint projector P in the sense of 
[5, Definition 2.2]. 

The importance of right-orthogonal, left-orthogonal, and orthogonal 
partial inverses lies in their connection with the existence of extremal 
solutions, minimal solutions, and best approximate solutions of the 
equation 

co Tx = y. 
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THEOREM 3. If U is a right-orthogonal partial inverse of T e A(V, N2), 
then for y e 3)(JJ) the equation (1) has v=Uy as an extremal solution. 
If in addition, nearest points from 8%(T) are unique (in particular if N2 is 
strictly convex), then the existence of an extremal solution implies that 
y e ®(U)=0t(T)®rf{Q). 

THEOREM 4. IfU is a left-orthogonal partial inverse of T and the equation 
(1) has a solution, then Uy is a (not-necessarily unique) solution of minimal 
norm. 

THEOREM 5. If U is an orthogonal partial inverse of T, and if in N2 

nearest points from â$(T) are unique, then for all y e 3>(U), x=UTUy= 
Tp^y is a (not-necessarily unique) best approximate solution of (I). 

COROLLARY 6. Let Hx and H2 be Hubert spaces and let T:3(T)cz 
H1->H2. Then (1) has an extremal solution if and only if the orthogonal 
projection of y onto M(T) lies in 0l(T).In this case (1) has a (unique) best 
approximate solution if and only if the orthogonal projection of any (every) 
extremal solution onto JV*(T) lies in ^(T). If T has an orthogonal partial 
inverse, then (1) has a unique best approximate solution whenever it has an 
extremal solution. 

This corollary basically contains the results given in Erdelyi and 
Ben-Israel [2, §2]. For matrices, it is well known that ||̂ 4JC—Z?||2 is mini­
mized by x= Ub if U satisfies AUA=A and AUis selfadjoint (see e.g. Rao 
and Mitra [8]). This is a special case of Theorem 3. Also if Ax=b has a 
solution, then the unique solution of smallest norm is x=Ub where 
AJJA—A and UA is selfadjoint. This follows as a special case of Theorem 
4 plus the use of strict convexity which gives uniqueness. Finally the well-
known results for a bounded or densely-defined closed linear operator 
on a Hubert space with closed or nonclosed range (see, e.g., [4]) are also 
corollaries. 

In view of Theorem 5, which gives the existence of best approximate 
solutions, it is useful to consider another kind of generalized inverse. 

DEFINITION 7. Let Te A(NU N2), and consider a, yeN2 such that 
Tx=y has a best approximate solution in Nx. We define 

Td(y) = {x G Ni I x is a best approximate solution to Tx = y} 

and call the set-valued mapping y->Td(y) the metric generalized inverse. 
Here 2iï(Td) = {y e N2\Tx=y has a best approximate solution in A^}. 
A (in general nonlinear) function Ta(y) e Td(y) is called a selection for 
the metric generalized inverse. 

From Theorem 3 we see that if T has a right-orthogonal partial inverse 
and if nearest points from 0l(T) are unique, then @(Td)a0l(T)®jV*(Q). 
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If in addition Thas an orthogonal partial inverse U9 then @(Td)=2iï(U) = 
3t(T)®oV(Q) and T}>Q = UTU is a linear selection for T\ 

4. Remarks and special cases of the metric generalized inverse, (i) 
Holmes [3] defines the generalized inverse of T e ^(Nl9 N2) to be Td in 
the case where Td(y) is always a singleton and gives some conditions which 
imply that Td is densely defined and/or continuous. He uses this approach 
to obtain the (linear) generalized inverse in the Hubert space case. 

(ii) Newman and Odell [6] have studied Td in the finite-dimensional 
case where the norms are strictly convex. In this case, there is always a 
unique best approximate solution of Lx—y given by B=(I—F)ME where 
M is any partial inverse of L, E is the nearest point map onto &(A), and 
F is the nearest point map onto J^(A). Some of the results of Erdelsky 
[1] are also subsumed by our theorems. 

(iii) Erdelyi and Ben-Israel [2] considered the case of an arbitrary 
linear mapping with domain in a Hubert space Hx and range in a Hubert 
space H2' I n this case Td(y) is always a singleton and Td is a linear map. 
They used the name g-inverse. Here @(Td) = T(%)®&(T)± where # = 
9{T)C\JV\T)^, and &(T)$@(Td) in general. Let 

T = T | ^ 0 where ^ 0 = ^{T) 0 <g. 

Then Thas an orthogonal generalized inverse Tf in the sense of Definition 
2 with domain T($)®TÇS)L

9 and the g-inverse turns out to be Td= 
T*\2(Td). If T is decomposable with respect to a selfadjoint projector, 
then TB=Tf; see Corollary 6. 

(iv) The problem of obtaining selections with nice properties for the 
metric generalized inverse of linear and nonlinear operators merits study. 

The proofs and some additional results will be published elsewhere. 
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