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ABSTRACT. An example is given of a separable Banach space X
whose dual is not separable, but each infinite-dimensional sub-
space of X contains an infinite-dimensional subspace isomorphic
to Hilbert space. Thus X contains no subspace isomorphic to ¢, or
L, X is somewhat reflexive, and no nonreflexive subspace has an
unconditional basis.

It has been conjectured that every infinite-dimensional Banach space
has an infinite-dimensional subspace that is either reflexive or isomorphic
to ¢y or to /; [9, p. 165]. A counterexample would also be an example of a
space that has no infinite-dimensional subspace with an unconditional
basis [6, Theorem 2, p. 521]. It is known that there is a nonreflexive
Banach space J with no subspace isomorphic to ¢, or to /; [6, pp. 523-527],
but J** is separable. Each of the following is a necessary and sufficient
condition for a separable Banach space X to contain a subspace isomorphic
to /;; separability is not needed for conditjons (i) and (ii) (see [S, Theorem
2.1, p. 13] and [10, p. 475]).

(i) L,[0, 1] is isomorphic to a subspace of X*.
(ii) C[0, 1]* is isomorphic to a subspace of X*.

(iii) X* has a subspace isomorphic to /;(I') for some uncountable I'.

A natural and well-known conjecture in view of the preceding is that a
Banach space has a subspace isomorphic to /; if the space is separable and
its dual is not separable (e.g., see [1, §9, p. 243], [2, §5.4, p. 174], and the
last paragraph of [11]). It will be shown that this conjecture is false. The
counterexample X has the property that each infinite-dimensional sub-
space has an infinite-dimensional subspace isomorphic to Hilbert space.
Thus X is also a counterexample to the conjecture that each separable
somewhat-reflexive space has a separable dual (see [3, Problem 3, p. 191]
and [8, Remark IV.2, p. 86]). Also, neither ¢, nor /; has an infinite-
dimensional subspace isomorphic to Hilbert space, so no nonreflexive
subspace has an unconditional basis [6, Theorem 2, p. 521]. It has been
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shown by J. Lindenstrauss and C. Stegall that X is a counterexample for
several other conjectures. They will present these results in a later paper,
as well as giving another example of a separable space with nonseparable
dual that has no subspace isomorphic to /; (this space has a subspace iso-
morphic to ¢,).

The counterexample is intimately related to the space J mentioned
above, e.g., many complemented subpsaces are isometric to J. This follows
from the fact that, if x={x,} € J, then

n—1
x| = SU—P{ [z (Xp(i+1) — xm(i))z]
=1

but if x is written as {£,}, where &,=x,—x,,, and x=>7 &,e,; with e, the
sequence for which x,=1 if i<n and x,=0 if i{>n, then

Il = sul [”Z_l(w(ji)_lfi)z] oS al) < <p)nz 1)

J=1 \ i=n(5)

1/2
A Zpl) < <pm)n 1},

To describe the counterexample, first choose a set Q of cardinality c,
each of whose members can be thought of as an infinite subset of the
positive integers or as a nested sequence of intervals obtained as follows.
Associate 1=>5(1, 1) with the interval [0, 1], then 2=5(2, 1) with [0, }]
and 3=5(2, 2) with [$, 1], and in general for each positive integer n use the
integers from 2"! to 2"—1, or {b(n,i):1=<i=2""}, to label the 2"!
intervals remaining at the nth stage of the process customarily used to
describe the Cantor set. Now let each number ¢ in the Cantor set deter-
mine a member of Q, namely, the set of all integers associated with inter-
vals containing . By a segment we shall mean a finite increasing sequence
(possibly empty) of consecutive members of some set &7 € Q. If S/ #H
and &7 and 4 are in Q, then &/ N is a nonempty initial segment of both
&/ and B. A branch point of order k for € is one of the integers {b(k, i):
1 <i=<2%1} that is the kth term of some member of Q. A branch of order k
(or a k-branch) is an infinite increasing sequence of consecutive members of
some set &/ € Q whose first member is a branch point of order k. For each
sequence x={x,} of real numbers with finite support, let

=od[3( 377

where the sup is over all finite sets {A4(n):1=n=p} of pairwise disjoint
segments. Let X be the completion with respect to this norm of the normed
linear space X of all such sequences. Then X is a separable Banach space.

For each & € Q, define a linear functional f, on X by letting f_,(x)=
S st X; if x € X, and extending to X by use of continuity. Then || f,/|=1.
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Also, if me o/ —%, ne #—Z, and x is the sequence {x,} with x,=1,
x,=—1 and x,=0 otherwise, then (f,—fz)(x)=2 and |x|=2'/2. Thus
I.fx—fs =2 and X* is not separable.

THEOREM. If 0>>./2, then each infinite-dimensional subspace of X con-
tains an infinite-dimensional subspace H for which there is an inner-product
norm ||| || such that

lixll = Ixll = 6 lixll if x e H.

Proor. It is sufficient to prove the theorem for X. Let Y be an infinite-
dimensional subspace of X and let Y* be the subspace of ¥ whose members
are zero at each of the finite set of branch points with order less than k.
Then Y* has finite codimension as a subspace of Y. For each x in X, let

337

where the sup is over all sets {B(n)} of pairwise disjoint k-branches. Let

o = lim inf{[x],:x € Y* and ||x|| = 1}.

k-0

It will be shown that w=0. Suppose w>0. For ¢>0, choose X so that
(1) inf{[x]i:x € Y*and ||x| =1} > o®* —¢ ifk =K.

Choose an increasing sequence of integers {m(k)} with m(1)=K, and then
a sequence {y*} in X such that, for each k, [|y*| =1, y* has nonzero terms
only at branch points with orders in the interval [m(k), m(k+1)), and

(2) [y" 3n(k) < 0)2 + e.

It will be shown that a contradiction is obtained if ¢ is sufficiently small.
Let y*={y%}. Since [y*]x>w?—e and y* € Y™® there are 2X~! branch
points of order m(k), which will be denoted by {b(k, p?):l§i§2K“1}
rather than using b(m(k), p¥), and 2%~ branches {B(k, p¥):1=i<257"} of
order m(k) starting at these branch points, such that

2
3) z( > y’;) >0t —e.
i \jeB(k,p})

Now for each i, k and « with i 2%~ and k<, let o(k, «; i) be j if
there exists j 2%~ such that b(k, p¥) and b(k, p5) are on the same K-
branch. Then o(k, «; i) is strictly increasing as a function of i and deter-
mines a one-to-one mapping of a subset of {p¥:i<2%~!} onto a subset of
{pi:i =<2%-1}. Choose a sequence of positive integers I; so that if k and «
are in I, and k<«, then o(k, x; i)=0(k; i) is independent of « for each i.
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Then choose a subsequence I, of I; so that if k € I, then a(k; i)=0(i) is
independent of k for each i. Now, o[o(i)]=0(i)=i and, for each i <2K-1
either i is in the domain of o and there is a K-branch that contains all
b(k, p§) for k € I, or i is not in the domain of ¢ and no K-branch that
contains b(k, p¥) for some k € I, can contain any b(«, p§) for k#k and
k€1,

Now choose a subsequence /; of I, such that, for each i in the domain of
o and any two members k and « of I,

DVE— D ¥

ieB teB

(4) < 2—K/2£’

where B is the K-branch containing all b(k, p¥) for k € I,. For a 4 to be
chosen later, let {u(j):1=<j=A} be any A consecutive members of I; and,
for any K-branch B, consider

o [3Eem)]-Zer(Z)

i€B \‘ij=1 teB

For each u(j), let S,p yt® be denoted by pi” or A%” accordingly as B

contains one of the branch points {b[u(}), p4*"]} or B does not contain any
such branch point. Then either there exists c§2K“1 and «>0 such that B
contains {b(u(j), p*'”):;j<«} and B contains no other b(u(j), p¥""’) for
k<j=2 and iS2%~, or else B contains at most one of {b[u(j), p4""]:
1=j=4,i <2%-1}, For any real numbers {a,},

©) (z ai)zé ﬁziag.

Therefore it follows from (4) that the expression (5) is not greater than
2 4
Y] 2ph)* + 4( [5] 2‘Kl2s) + 3 e iany,
=1

where u € {u(j):j=<A} (except that the first term in (7) may be missing),
« is the largest integer such that <1 and B contains b(u(}), p*"’) for some
¢ and for all j =«, and each ¢, is 0 or 1. Note that if we sum terms of type
(A%{)))2 over any 25! pairwise disjoint K-branches B(n), then it follows
from (2) and (3) that this sum is not greater than 2¢; also, there are then at
most 25~ terms of the type of the first term in (7), so these can contribute
to [y*)12 s for at most 25~ values of j. Therefore the sum of (5) or (7)
over any 257 pairwise disjoint K-branches is not greater than

22K Y(o? 4 &) + 4[A)2]% + 1-2%(26) < 2K0? + e(2K + A - 241) 4 2262,
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Since || 3}y (—1)y*?|2= 1, this contradicts (1) if
2K 0% 4+ &K 4+ 222 4 226 < Aw? — &).

This inequality can be satisfied by choosing 1>2% and then choosing &
small enough.

This concludes the proof that w=0. Since w=0, we can let ¢ be a posi-
tive number and choose an increasing sequence of integers {n(k)} and a
sequence {y*} in X, such that, for each k, ||y*||=1, y* has nonzero terms
only at branch points with orders in the interval (n(k), n(k+1)), and

® T < 27%%

Let {a;} be a finite sequence of real numbers with 3 a3>0. Then | > a;y/|2=
> ai. Choose a finite set {4(n):1=n=p} of pairwise disjoint segments

such that
2
S el =3( > San).
7 \ed(n) j§

If 4 is any of these segments, then A4 is the union of an initial and a
terminal segment, each of which contains a part of the piece of a branch
between branch points of order n(j) and branch points of order n(j+1)
for some j, and several interior segments, each of which has the property
that there is a j such that the segment contains all of the piece of a branch
between branch points of order n(j) and branch points of order n(j+1).
A sum 3 a,y} over those i in an initial segment or a sum over those i in a
terminal segment contributes only to the norm of the corresponding a;y7,
while a sum over an interior segment contributes to [a;y],; only. Now
we can use the fact that

(@a+b+ 0= @2+ e)a®+ b)) + (1 + 2/e)c

for any real numbers a, b and ¢, and then (6) and (8), to obtain
2 .
ISavl's@+o3a+(1+3) 32
J

<(2+s)Za§+(28+e2)za§=(2+3e+82)2a§.

Since & was arbitrary, for any 6>./2 there is an infinite sequence {y*} of
members of X such that, for all sequences {a;} of real numbers,

o0 1/2 0 . 0 1/2
(3 s[Sar]=o(Za)"
1

1 1
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ERRATUM ADDED IN PROOF. The sequences {m(k)} and {y*} should be
chosen simultaneously so that each y* isin Y and the branches {B(k, p¥):
1 <i<2K~1} are pieces of pairwise disjoint K-branches; {u(): 1 <j <}
should not be consecutive members of 75, but chosen so that, for each
branch point b of order K,

w{[Z T} <ol e } o2

where 1 <j <\ and B isany K-branch containing b. In the first term of
(7), pl% should be replaced by the sum of the absolute values of two such
terms; in the next two inequalities, 2X(w? + €) can now be replaced by
8w? + 16e and A need not depend on K.
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