BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 80, Number 4, July 1974

AUTOMORPHIC MAPPINGS IN Rⁿ

BY O. MARTIO AND U. SREBRO

Communicated by F. W. Gehring, December 12, 1973

1. By an automorphic mapping in \mathbb{R}^n we mean a continuous, open, discrete, and sense-preserving mapping f from a domain D in \mathbb{R}^n into $\overline{\mathbb{R}^n} = \mathbb{R}^n \cup \{\infty\}$ which satisfies $f \circ g = f$ for all $g \in G$ for some discrete group G of *n*-dimensional Möbius transformations, $n \ge 2$. The results presented here indicate differences (see §5) as well as similarities (see §4) between automorphic functions in C and automorphic mappings of bounded dilatation in \mathbb{R}^n , n > 2. By mappings of bounded dilatation we mean quasimeromorphic (qm) mappings (cf. [MRV 1-2]).

2. Let G be a discrete Möbius group acting on the unit ball B^n . For $x_0 \in B^n$ which is not fixed by any element of $G \setminus \{id\}$ the set $P = \{x \in B^n : d(x, x_0) < d(x, g(x_0)), \forall g \in G \setminus \{id\}\}$ is a normal fundamental polyhedron; d denotes the hyperbolic distance. If the hyperbolic measure $V(B^n/G)$ of B^n/G is finite, then every normal fundamental polyhedron P has a finite number of (n-1)-faces and a finite number of boundary vertices $\{p_1, \dots, p_k\} = \overline{P} \cap \partial B^n$ [S]. The last set is void when B^n/G is compact. P is said to be simple if for every boundary vertex $p \in \overline{P} \cap \partial B^n$ all the (n-1)-faces of P which meet at p are pairwise G-equivalent. By a recent result of Leon Greenberg (unpublished) it can be shown [MS] that if $V(B^n/G) < \infty$, then every point $b \in \partial B^n$ which is fixed by a parabolic element $g \in G$ is a boundary vertex of some simple fundamental polyhedron. A Möbius transformation is called parabolic if it has a unique fixed point in \overline{R}^n .

Complete proofs of the following theorems and related results will appear in [MS].

3. The existence of automorphic meromorphic functions for Möbius groups in C is usually proved by methods which cannot be used in \mathbb{R}^n , n>2. However, with a suitable modification of a construction by J. W. Alexander [A] we obtain

THEOREM 1. Every discrete Möbius group acting on B^n with $V(B^n/G) < \infty$ has qm automorphic mappings.

Copyright © American Mathematical Society 1974

AMS (MOS) subject classifications (1970). Primary 30A60; Secondary 30A68, 57A99, 31B15.

We do not know, whether qm automorphic mappings exist for all discrete Möbius groups in B^n .

4. Let G be a discrete Möbius group acting on B^n with $V(B^n/G) < \infty$, P a simple fundamental polyhedron, \tilde{P} a fundamental set for G with $P \subset \tilde{P} \subset \bar{P}, f: B^n \to \bar{R}^n$ an automorphic qm mapping under G and $N(f, \tilde{P}) =$ sup card $f^{-1}(y) \cap \tilde{P}$ over all $y \in \bar{R}^n$.

THEOREM 2. Let f, G, P, and \tilde{P} be as above.

(i) If U is any open set in \mathbb{R}^n which meets $\partial \mathbb{B}^n$, then $\overline{\mathbb{R}}^n \setminus f(U \cap \mathbb{B}^n)$ is of zero n-capacity.

(ii) If $N(f, \tilde{P}) < \infty$, then $\bar{R}^n \setminus fB^n$ is of finite cardinality.

(iii) If $\overline{P} \subset B^n$ or if $\lim f(x)$, as $x \to p$ in \widetilde{P} , exists at every boundary vertex $p \in \overline{P} \cap \partial B^n$, then $N(f, \widetilde{P}) < \infty$ and

$$\sum_{x \in f^{-1}(\hat{y}) \cap \tilde{P}} i(x, f) / N(x, G) = N(f, \tilde{P})$$

for all $y \in fB^n$. Here i(x, f) denotes the local topological index of f at x and $N(x, G) = \operatorname{card} \{g \in G : g(x) = x\}.$

(iv) If $\overline{P} \cap \partial B^n \neq \emptyset$ and $N(f, \widetilde{P}) < \infty$, then the set Q of all parabolic fixed points of G is dense in ∂B^n and f has a radial limit at every point $b \in Q$.

THEOREM 3. Let f, G, P, and \tilde{P} be as above and let $p \in \partial B^n$ be a boundary vertex of P. If $N(f, \tilde{P}) < \infty$ and $\lim_{t \to 0} f(tp) = a \neq \infty$ as $t \to 1$, then for all sufficiently small r > 0

$$A_1 e^{-\alpha/r} \leq M(r) \leq A_2 e^{-\beta/r}$$

Here $M(r) = \sup |f(x)-a|$ over all $x \in B^n$ with |x-(1-r)p|=r, α and β are constants which depend on n, G, $N(f, \tilde{P})$, and the dilatations of f, and A_1 , A_2 are constants depending on f and G.

The main tools used in the proofs of Theorems 2 and 3 are two capacity inequalities for condensers in B^n/G and general results on open and discrete mappings on manifolds.

5. One of the differences between plane and space qm mappings f is in the structure of their *branch set* B_f (the set of points where f is not a local homeomorphism) (cf. [Z], [MRV3, 2.3]). These results combined with information on the geometry of Möbius groups give

THEOREM 4. Let $f: B^n \to \overline{R}^n$, n > 2, be a qm automorphic mapping for a Möbius group G acting on B^n with $V(B^n/G) < \infty$. If $\infty \notin fB^n$ or if $N(f, \tilde{P}) < \infty$, then $B_j \neq \emptyset$; moreover $\partial B^n \subset \overline{B}_j$.

The condition n>2 is essential (the elliptic modular function is a counterexample), and so is the condition $V(B^n/G) < \infty$. This is shown by

an example of a bounded qm local homeomorphism which is automorphic under an infinite Möbius group G with $V(B^n/G) = \infty$.

REFERENCES

[A] J. W. Alexander, Note on Riemann spaces, Bull. Amer. Math. Soc. 26 (1920), 370-372.

[MRV1] O. Martio, S. Rickman and J. Väisälä, Definitions for quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I No. 448 (1969), 40 pp. MR 41 #3756.

[MRV2] ——, Distortion and singularities of quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I No. 465 (1970), 13 pp. MR 42 #1995.

[MRV3] ——, Topological and metric properties of quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I No. 488 (1971), 31 pp.

[MS] O. Martio and U. Srebro, Automorphic quasimeromorphic mappings in \mathbb{R}^n , Acta Math. (to appear).

[S] A. Selberg, Recent developments in the theory of discontinuous groups of motions of symmetric spaces, Proc. Fifteenth Scand. Congress (Oslo, 1968), Lecture Notes in Math. vol. 118, Springer-Verlag, Berlin, 1970, pp. 99–120. MR 41 #8595.

[Z] V. A. Zorič, A theorem of M. A. Lavrent'ev on quasiconformal space maps, Mat. Sb. 74 (116) (1967), 417-433=Math. USSR Sb. 3 (1967), 389-404. MR 36 #6617.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HELSINKI, HELSINKI, FINLAND

DEPARTMENT OF MATHEMATICS, TECHNION, HAIFA, ISRAEL

694