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1. Introduction. The purpose of this research announcement is 
to describe a new approach for studying asymptotic behavior of solutions 
of functional equations involving a Volterra operator. More specifically, 
we study the role played by positive definite and related classes of functions 
as convolution kernels of the Volterra operators. 

2. Positive and D-positive definite functions. Let a(t) e C(0, oo) n 
Z/̂ O, 1). We say that a(t) is positive definite if for any function <p(t) e 
C[0, oo), the quadratic form 

(1) Qa[<p](T) = ! %(*) [a(t - r)cp{r) dr dt ^ 0, T ^ 0. 
Jo Jo 

Similarly, we say that a(t) is D-positive definite if the quadratic form 

(2) Ra[cp](T) = f %(0 f [a(t - T)<KT) dr dt ^ 0, T £ 0. 
Jo at Jo 

This definition of positive definite functions differs slightly from that of 
Bochner since a(04.) is not assumed to exist and remains finite. The present 
form, as applied to the study of Volterra integral equations, was first intro­
duced by Halanay [1], although he assumed that a{i) e C[0, oo), thereby 
excluding the interesting case *~v, 0 < r < l , the "so-called" Abel kernels. 
The idea of D-positive definite functions may be found in MacCamy 
[6] although his definition on a(t) is even more restrictive. There is some 
ambiguity as to what Ra[(p](T) means when a(0+) does not exist. This 
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difficulty is overcome by first restricting Ra to functions in C f̂O, oo) 
and then extending to all of C[0, oo) by passing to the limit. 

A special subclass of positive definite functions are the negative expo­
nentials, ee~at, e, a > 0 , in terms of which we define a larger subclass 
called strongly positive definite functions. We call the function a(t) strongly 
positive definite, if there exists e, a > 0 such that a(t)—ee~at is positive 
definite. On the other hand, in view of Corollary (b) below, we can con­
sider the special subclass of D-positive definite functions which are 
nonnegative, nonincreasing, and do not belong to Lx(0, oo). Denote 
this special class by JSf. We define a(t) to be strongly D-positive definite 
if there exists b(t) e 3? such that a(t)—b(t) is D-positive definite. 

Criteria for positive and D-positive definiteness of a(t) can be given in 
terms of its Laplace transform a(s) defined by 

<2(s) = lim e~8ta(t)dt. 
T-+ao Jo 

We now assume in addition that a(t)e L°°(0, oo) (more precisely, it is 
sufficient to assume that a(t) belongs to the space of tempered distri­
butions). 

THEOREM 1. Suppose that a(ia>) exists almost everywhere for co e R. 
Then, 

(a) Re â(ico)^.0 a.e.^>a(t) is positive definite, and 
(b) Im œâ(iœ)^0 a.e.=>a(t) is D-positive definite. 

Using Theorem 1, one can now formulate similar criteria for strongly 
positive and D-positive definite functions. As a consequence of this, we 
have 

COROLLARY, (a) Let a(t) be nonnegative, a'(t) nonpositive and non-
decreasing, then a(t) is positive definite. If, in addition, a'(t)jéO then a(t) 
is strongly positive definite. 

(b) Let a(t) be nonnegative and nonincreasing, then a(t) is D-positive 
definite. 

Using these results, one can show that any trigonometric polynomials 
in cosines with positive coefficients are positive definite, whilst trigonom­
etric polynomials in sines with positive coefficients are D-positive definite. 
The important class of Abel kernels, t~y, 0 < v < l , are both strongly 
positive and D-positive definite. Furthermore, some weakly singular 
kernels involving logarithms can also be shown to be strongly positive 
and strongly D-positive definite. For proofs of these results refer to 
[7], [8], [9]. 
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3. Volterra integral equations. We consider the following two non­
linear Volterra integral equations studied by Levin [3], [4]: 

(3) u\t) = ƒ (0 + [a{t - r)g(W(r)) dr, 
Jo 

(4) «(0 = f{t) + [a{t - r)g(M(r)) dr, 
Jo 

where/(O e L^O, oo) and g(u) satisfies 

g(u) e C ( - oo, oo), tig(u) > 0, u ^ 0; 

lim G(u) = oo, |g(n)| ^ Af(l + G(II)), G(u) = fg(£) « . 
|M|->OO JO 

It is known [2] that if a(t) is nonnegative, a'(t) nonpositive and non-
decreasing, then all solutions of (3) are bounded, and if, in addition, 
a'(t)jàO, then all solutions tend to zero. On the other hand, if a(t) is 
nonnegative, nonincreasing, then all solutions of (4) are bounded, and 
if, in addition, a(t) $ L^O, oo), then all solutions tend to zero [5]. Using 
the results given in §1, we can now state (see [9]) 

THEOREM 2. If a(t) is positive and D-positive definite, respectively, 
then all solutions of (3) and (4) are bounded, respectively. Moreover, if 
a(t) is strongly positive and D-positive definite, respectively, then all solutions 
of (3) and (4) tend to zero, respectively. 

4. An integro-partial differential equation. The concepts of positive 
and D-positive definiteness can also be used to study asymptotic behavior 
of solutions of integro-partial differential equations with equal efficiency. 
We consider the following initial boundary value problem which arises 
from the study of viscoelasticity: 

— (x, t) = \ a(t — T){AW(X, T) + g(r, u(x, r))} dr, x e Cl, t *t 0, 

(5) dt J° 
u(x, t) = 0, x e d£l and u(x, 0) = u0(x), 

where Q is a bounded domain in Rn and g(t, u) is a nonlinear perturbing 
term satisfying 

|g(t, II)| ^ A(0 \u\°, 0 ^ a ^ 1, Kt) e lî(0, oo). 

Here we are interested in establishing the existence of solutions of (5) 
and the asymptotic behavior of these solutions as *->oo. Denote by p(t) the 
creep compliance function corresponding to a(t), i.e. Jo p(t—r)a(t) dr=t. 
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THEOREM 3. Let fit) be positive definite and X(t) e L2(0, T),for every 
finite r > 0 . Then equation (5) has a generalized solution u(x, t) in the sense 
that u(x, t) e L2(0, T; #J(Q)), du(x, t)jdt e L2(0, T; L2(Q)) and satisfies 
(5) weakly in L2(Q). If, in addition, a(t) is strongly positive and gu(t, u) 
is bounded, then 

lim ||w(-, Olli = 0, 

where || ||x denotes the norm for H\(Q). 

The hypotheses required on a(t) and p(t) are easily satisfied if a(t)= 
ee~~at, e, <x>0. For other examples, we refer the reader to [10]. The proof 
of existence is based upon the Galerkin method and Sobolev's embedding 
lemma, whereas the asymptotic behavior is derived using Gârding's 
inequality and a priori estimates for elliptic partial differential operators. 
Details of these results together with extensions of positive and D-positive 
definite functions to Hilbert spaces will appear elsewhere [10]. 

REFERENCES 

1. A. Halanay, On the asymptotic behavior of the solutions of an integro-differential 
equation, J. Math. Anal. Appl. 10 (1965), 319-324. MR 31 #579. 

2. K. B. Hannsgen, On a nonlinear Volterra equation, Michigan Math. J. 16 (1969), 
365-376. MR 40 #3225. 

3. J. J. Levin, The asymptotic behavior of the solution of a Volterra equation, Proc. 
Amer. Math. Soc. 14 (1963), 534-541. MR 27 #2824. 

4. , The qualitative behavior of a nonlinear Volterra equation, Proc. Amer. 
Math. Soc. 16 (1965), 711-718. MR 32 #8081. 

5. S.-O. London, On a nonlinear Volterra integral equation, J. Differential Equations 
14 (1973), 106-120. 

6. R. C. MacCamy, Nonlinear Volterra equations on a Hilbert space, J. Differential 
Equations (to appear). 

7. R. C. MacCamy and J. S. W. Wong, Stability theorems for some functional equa­
tions, Trans. Amer. Math. Soc. 164 (1972), 1-37. MR 45 #2432. 

8. J. S. W. Wong and R. Wong, Asymptotic solutions of linear Volterra equations with 
singular kernels, Trans. Amer. Math. Soc. (to appear). 

9. J. S. W. Wong, The role of positive definite f unctions in the study of Volterra integral 
equations, Proc. USC Conference (to appear). 

10. , A nonlinear integro-partial differential equation arising from viscoelasticity 
(to appear). 

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF IOWA, IOWA CITY, IOWA 52242 


