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THE METHOD OF EXTREMAL LENGTH 

BY BURTON RODIN1 

Extremal length has become a useful tool in a wide variety of areas. The 
roots of the method can be traced back to the length-area comparisons in 
L. Ahlfors [1] and 5- Warschawski [3], to the strip method of H. Grötzsch 
[1]-[15], and to even earlier works (see J. Jenkins [4, p. 7ff.] for a more 
complete historical background). In the 1940's Ahlfors and Beurling 
refined2 those methods in a profound way; extremal length was intro­
duced as a conformally invariant measure of curve families. This develop­
ment appeared in Ahlfors-Beurling [4]. 

Subsequent applications of extremal length have been numerous and 
varied. There are geometric applications, function-theoretic applications, 
and applications which relate function-theoretic properties to geometric 
ones. In addition, there is a characteristically computational aspect which 
arises in connection with certain classical problems on univalent functions. 
I wish to discuss examples in each of these areas. There are many important 
topics I shall omit (prime ends, quasiconformal mapping, generalized 
modulus, and generalized capacity to mention a few); the extended 
bibliography will give a more complete picture. 

1. The concept of extremal length. Let R be a surface (a surface, here, 
will be required to be connected, orientable, and to satisfy the second 
axiom of countability) with Riemannian metric ds0. An important special 
case will be a region R in the plane endowed with the Euclidean metric. 

A second metric ds on R is said to be conformally equivalent to ds0 if 
these two metrics give rise to the same angular measure in each tangent 
space of R. This condition is also expressed by the requirement that at each 
point of R the metrics are proportional: ds=p ds0 where p is a positive 
function on R. 
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We shall define extremal length in a manner which emphasizes the con-
formal invariance. Let T be a family of curves on R. For each metric ds 
on R, define the ds-length of Y to be 

(1) LÇT, ds) = inf ds. 

The area of R in the metric ds will be denoted by À(ds). Except for the 
regularity conditions that will be made explicit in a moment, the extremal 
length of the family T will be defined by 

(2) A(F) = sup(L2(T, ds)IA{ds)\ 

where the supremum is taken over all metrics ds which are conformally 
equivalent to ds0. 

It is clear from the definition that À(T) depends only on the angular 
measurements induced by the original metric ds0, and not on the metric 
itself. Thus the definition can be applied if R is any Riemann surface. 
In addition, we see immediately that the following theorem on conformai 
invariance is valid. 

THEOREM 1 (CONFORMAI, INVARIANCE OF EXTREMAL LENGTH). Let f be a 

1-1 conformai mapping of a Riemann surface R onto a Riemann surface S. 
Let r be a family of curves on R. Then A(r)=A(/(T)). 

For constructions and estimations, extremal length will be most flexible 
when the regularity conditions on ds are weakest. On the other hand, the 
integrals in (1) and A(ds) impose some degree of regularity. A number of 
different conditions have been suggested in the literature; see M. Ohtsuka 
[9, p. 70ff.], for a survey. A very satisfactory requirement, and the one 
I shall adopt, is the following: the supremum in (2) is taken over all ds of 
the form ds=p ds0, where p is a nonnegative Borel measurable function on 
R. This insures the existence of both integrals $y ds and A(ds), although 
they might be infinite. In the definition (2) we also set 0/0=oo/oo=0. It 
should be noted that ds is not necessarily a Riemannian metric in the usual 
sense—it may have zeros, and it need not be differentiable. Such a ds is 
called a linear density. The conformai invariance theorem, Theorem 1, 
still holds. In fact, we have (M. Ohtsuka [9, pp. 80-84]): 

THEOREM 2. Let f.R-+S be a complex analytic mapping of Riemann 
surfaces. Let F be a curve family on R. Then A(T):gA(/(T)). 

{An alternate definition of extremal length given in L. Ahlfors [6] 
admits competing metrics ds which need not be conformally equivalent 
to ds0. If ds is any Riemannian metric on R, the ratio ds/ds0 has a maximum 
Ax and a minimum A2 at each point of R. The dilatation K is defined as 
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K=Â1IX2. It is proved that A(r)=sup(L2(I\ ds)lA\ds)), where A'(ds)= 
j$RKdco and dco is the area element in the metric ds.} 

In certain simple cases extremal length can be computed explicitly. 
Consider a rectangle R in the plane, R={(x, y)\0<x<a, 0<y<b}. Let 
T consist of all arcs in R which join the sides of length b. A lower bound for 
A(Y) is obtained by computing L2(T9 ds)/A(ds) for any specific ds; if we use 
the Euclidean metric \dz\ we obtain the lower bound 

X(Y) ^ L2(T, \dz\)IA(\dz\) = a2/ab = a/b. 

An upper bound can be found by choosing a subfamily of V. The 
horizontal segments, yy:th->(t,y) for 0<t<a, yield 

L2(r, p \dz\) <>\\ p \dz\]2^ \ f p2 \dz\] \ f \dz\\ = a \ p2 dx; 
LJyv J LJyy J LJyy J Jyv 

integrate for y e (O, b) and obtain 

èL2(I\ p \dz\) ^ « ff/o2 dx dy = a^(p |dz\). 

R 

Thus L 2 ( r , p\dz\)\A{p\dz\)<ka\b, and since /> was arbitrary l(?)<.a\b. This 
proves 

THEOREM 3. Let Rbea rectangle of sides a and b. Let Y be the family of 
arcs in R which join the sides of length b. Then X(T)=ajb. 

Two other explicit values for extremal lengths ds are given in the 
following elementary theorem. 

THEOREM 4. Let R be the annulus a< \z\ <b. Let T be the family of arcs 
in R which join the two contours. Let T* be the family of closed curves in R 
which separate the two contours. Then A(r)=A_1(r*)=(l/27r)log(6/a). 

2. Geometric inequalities. There are a number of purely geometric 
applications of extremal length. The simplest example concerns the general 
quadrilateral (a Jordan curve with four distinguished points). 

THEOREM 5. Let R be a general quadrilateral of area A. Let a be the 
length of the shortest arc in R connecting one pair of opposite sides. Let b 
be the length of the shortest arc in R connecting the other pair of sides. Then 
a • b^A. 

A purely geometric proof of this theorem (E. Rengel [1], O. Teich-
müller [1]) was given by A. Besicovitch [1] in response to a function-
theoretic proof presented to him by Charles Löwner. The geometric proof 
is difficult. The use of extremal length, however, makes the proof trivial. 
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Let r be the family of arcs in JR which join one pair of opposite sides, 
and let T* be the family of arcs in R which join the other two sides. There 
is a conformai map ƒ of R onto some rectangle such that ƒ (T) and/(T*) 
are the families of arcs which join opposite sides of the rectangle. By 
Theorem 3, A(/(T)) • A(/(T*))=1. By the conformai invariance, 
A(r) • A(r*)=l. The Euclidean metric \dz\ in R can be used to give lower 
bounds for these latter two extremal lengths. Thus 

A A A(\dz\) A(\dz\) ~ 

and the theorem follows at once. 
There is a generalization of Theorem 5 to higher connectivity (Rodin 

[7]). Let £ be a compact set contained in the interior of the quadrilateral 
jR, and suppose that R1=R—E is connected. Theorem 5 would be false if 
we replaced R by Rx. It is possible to generalize from R to Rx if the 
definitions of a and b are suitably generalized. Let I \ be the family of 
arcs in R± which join one pair of opposite sides. Let T* be the family of 
curves (a curve is to mean a union of arcs) in R± which separate that pair of 
sides. An extremal length theorem asserts that A ^ ) • A(r*)=l. It follows 
immediately that if a is the infimum of the lengths of I \ , and if b is the 
infimum of the lengths of T*, then a • b^A, where A is the area of Rx. 

The extremal lengths A(rx), A(T*) considered above play an important 
role in characterizing certain function-theoretic properties of the set E. 
We shall return to such applications in §5. 

Here is another geometric application of extremal length (O. Teich-
müller, C. Löwner, P. M. Pu [1], L. Keen [1], B. Rodin [7]): 

THEOREM 6. Let R be a torus with a Riemannian metric. Let a be the 
length of the shortest nontrivial cycle on R, and let A be the area ofR. Then 
a2<:2A/j3. 

This theorem can be proved easily by first mapping R conformally onto 
a flat torus represented by a parallelogram 0, 1, T, 1 + r in the plane. One 
can always choose r to be in a fundamental region of the modular group, 
so we may assume — J ^ R e r ^ J , M ^ l , lmr>0 . Thus Im T ^ ^ / 3 / 2 . In 
the parallelogram, the extremal length of the horizontal line segments is 
easily seen to be 1/Im r. Therefore the corresponding cycles T on the torus 
have extremal length 1/Im T. Therefore, if ds0 is the original metric on the 
torus then L2(T, ds^lA{ds^^2j^]?> for these particular cycles T, and the 
theorem follows. 

The following theorem was proved by C. Blatter [1]. It is a profound 
generalization of Theorem 6, although the constant is no longer best 
possible. 
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THEOREM 7. Let R be a compact surface of genus g with a Riemannian 
metric. Let a be the length of the shortest nontrivial cycle on R. Let A be 
the area of R. Then 

a* < (2lTT)((g + \)\)1/9A. 

The proof of Theorem 7 is too long to repeat here. However, it will be 
useful to sketch the main ideas in order to point out an important extremal 
length result which arose in the course of the proof. 

There is a linear mapping (de Rham, Hodge) of the 1-cycles on R to the 
harmonic 1-forms on R. The harmonic differential ac which corresponds to 
the 1-cycle c under this mapping satisfies the two properties: 

(3) J co = (co, ac) for all closed 1-forms a>, 

(4) * ac = c x d for all 1-cycles d, 
Jd 

where (co, crc)=$$R coh * ac is the inner product, and cxd is the inter­
section number. 

The norm (crc, o*c)
1/2 can be related to extremal length. Let A([c]) denote 

the extremal length of the homology class of c. C. Blatter [1] and R. 
Accola [1] proved independently that 

(5) K[c]) = (a99 oc). 

The important result (5) (it will be discussed in more detail later) shows 
that once a homology basis cl9 c2, • • • , c2g is chosen for the 1-cycles, the 
2gx2g matrix S= ||(act, <rc)|| determines the extremal lengths A([c]) of 
all homology classes [c] on R by means of 

(6) A([2 niCi]) = 2 fW(<V °o) = nSnK 

There is a theorem of Minkowski which guarantees, for any positive 
definite 2g x 2g matrix Q of determinant 1, the existence of a nonzero 
integer vector m which satisfies mQmt^(2l7r)[(g+l)l]1/9. The next part of 
Blatter's proof consists in showing that the matrix S satisfies the hypotheses 
of Minkowski's theorem if the homology basis cl9 c2, • • • , c2g is suitably 
chosen. After that is accomplished the vector m=(m1, m , • • • , m2g) can 
be used to form a nontrivial c—mxCx+m2c2+- • '+m2gc2g with A([c])^j 
(2/7r)[(g+l)!]1/flr. Therefore, if ds0 is the original metric on R then 
L2([c]9 ds0)lA(ds0)^(2l7T)[(g+l)l]^g and the theorem follows. 

The Accola-Blatter result (5) has interesting ramifications. For example, 
it shows that the matrix S is completely determined by the extremal lengths 
of a finite number of homology classes. The matrix S, in turn, determines 
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the Riemann period matrix of the compact Riemann surface underlying R. 
Hence, by Torelli's theorem, we conclude that a finite number of extremal 
lengths of homology classes provide a complete set of conformai invariants 
for compact Riemann surfaces. The same is true for plane regions of 
finite connectivity. 

Other ramifications of (5) involve noncompact Riemann surfaces. 
Accola [1] proved (5) for an arbitrary R, compact or not. A. Marden [1] 
and Rodin [1] considered other kinds of homology classes. Let [c]x denote 
the homology classes of c modulo dividing cycles. Let [c]2 denote the 
relative homology class of c (chains may have infinitely many simplexes). 
Marden [1] proved that A([c]2)={oM, <rh0); Rodin [1] proved that A([c]x)= 
((ThS6, ohse). Here ah0 and ahse are the projections of ae onto the subspaces 
Th0 and Thse of the Hubert space Th of square integrable 1-forms on R. The 
subspace Th0 is the orthogonal complement of T£e, where Yhe is the space 
of exact harmonic 1-forms. The subspace Fhse consists of the semiexact 
harmonic 1-forms. 

Another generalization of (5) was recently obtained by C. D. Minda 
[2]. He was able to relate the norm (ac, ac) to extremal length in the case 
that c is an arbitrary 1-chain, not necessarily a cycle. This result is especi­
ally interesting if R is a compact Riemann surface, for it leads to an 
extremal length characterization of principal divisors—a geometric counter­
part to the classical theorem of Abel. 

Extremal length has been used to obtain length-area inequalities related 
to flows. Let c be a 1-cycle on a compact Riemannian 2-space JR. Then, in 
the sense of F. Klein [1], there is a steady fluid flow on R corresponding 
to c; namely, the flow which has the property that along any closed curve d 
the change in the potential is the intersection number cxd. Let a be the 
length of the shortest geodesic homologous to c. Let b be the length of the 
shortest geodesic, not necessarily a cycle, along which the potential drop is 1. 
Then a • b^A, where A is the area of R (Rodin [7]). 

3. Infinite extremal length. Having discussed some geometric appli­
cations of extremal length, we turn next to applications in the area of 
analysis. Just as measure theory provides the notion of a negligible point 
set (measure zero), extremal length provides the notion of a negligible 
curve family. Following B. Fuglede [1], we say that a property holds for 
almost all curves in a curve family Y if the subfamily of exceptional curves 
has infinite extremal length. (In this context the reciprocal of the extremal 
length, called the modulus, may be more natural.) This notion may be 
justified somewhat by the following properties of infinite extremal length: 
For any curve families I \ T0, I \ , • • • 

(7) A(r0) = oo => A(r u r0) = x(T) 
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and 

(8) A ( r j = o o forn = 1,2, • • • = > A ( u r w ) = oo. 

Some examples may help to illustrate the property of infinite extremal 
length. Consider the horizontal line segments yy=z{(x,y)\0^x^l}9 and 
let F={yy\y e E} where E is a measurable set of real numbers. Then 
A(T)= oo if and only if E has measure zero. 

As a second example, let E be a compact point set in | z | < l , and let T 
consist of all arcs which join \z\ = 1 to E. Then A(T)= oo if and only if the 
logarithmic capacity of E vanishes. 

There are many function-theoretic applications of this notion of infinite 
extremal length. A striking example of its usefulness occurs in the problem 
of the existence of boundary values for functions with a finite Dirichlet 
integral. For simplicity, consider the case of a C ^function u defined in a 
plane region R. The Dirichlet integral of u is D(u)=$$R (ul+ify dx dy. 
We say that an arc y:[0, 1)->JR in R tends to the boundary of R if 
Ç) {CI y[(t, l)]\0^t<l}czdR. The next theorem (M. Ohtsuka [8], [9]) 
shows that, in a general sense, u has boundary values if D(w)<oo. The 
significant point is that no assumptions whatever are required concerning 
the geometric boundary of R. 

THEOREM 8. If D(u)< oo then u has a limit along almost all arcs in R 
which tend to the boundary. 

An extremal length argument makes the proof trivial. Consider the 
linear density öfo=|grad u\ \dz\. Then A(ds)=D{u)< oo. Let T be the 
family of arcs in R which tend to the boundary. The subfamily T ' = 
{y e r\$y ds= co} clearly has infinite extremal length. If y e T—T' then 
Jy ds<co, and hence Jy |rfw|<oo. Thus u has a limit along each such y, 
and the theorem is proved. 

In the situation of Theorem 8, suppose u has a limit along two arcs 
which tend to the same boundary point of R. The two limiting values would 
not, in general, be expected to agree; for example, the arcs might tend to 
different prime ends. The next result (Ohtsuka [9]) gives a useful condition 
for equality of these limits. 

THEOREM 9. Let cx and c2 be arcs with a common terminal point z0, and 
suppose they form the boundary of a Jordan region Q. Let u be continuous 
in CI £1—{z0} and satisfy D(u)<co.Ifu tends to a limit a along cx, and to a 
limit b along c2, then a=b. 

Again, extremal length provides a simple method of proof. Consider the 
family of circular cross cuts of Q with center at z0 and radius ^ e . It is 
elementary that A(T)=0. Therefore the density tffa=|gradw| \dz\ satisfies 
infyer Jy ds=0, and hence infy6r ƒ \du\=0. It follows that a=b. 



594 BURTON RODIN [July 

An interesting consequence of Theorem 9 is that the boundary values of 
a Dirichlet finite function cannot have a jump discontinuity if the region is 
bounded by Jordan curves. Other types of discontinuities are possible. 
Further results on the boundary values of Dirichlet finite functions, though 
not using the method of extremal length, are contained in J. Doob [1] and 
J. L. Lions and E. Magenes [1]. 

M. Ohtsuka [8], [9] uses extremal length to develop a very general form 
of Dirichlet's principle. His result, Theorem 10 below, shows that this 
notion of almost all curves describes perfectly the mode in which a 
harmonic function can be made to imitate the boundary behavior of a 
Dirichlet finite function. 

THEOREM 10. Let u be a ^-function on a hyperbolic Riemann surface R 
with D(w)<oo. Then there is a unique harmonic function U such that U—u 
has limit zero along almost all arcs in R which tend to the boundary. 

The notion of almost all curves has interesting applications to extremal 
length itself. This will be discussed next. 

4. Extremal metrics. Suppose T is a curve family on a Riemann surface 
R, and 0<A(T)<oo. We are interested in the problem of existence an$ 
uniqueness for an extremal metric, that is, a metric ds which satisfies 
A(T)=Z,2(r, ds)\A{ds). Simple examples show that an extremal metrjc 
need not exist in general. In the following discussion Theorems 11, 12, 
and 13 are based on K. Strebel [2] and N. Suita [3]. 

Consider the set P(T) consisting of all linear densities ds on R which 
satisfy A(ds)<oo and L(T,ds)^l. Thus A~ 1 ( r )=inf{^(*) |* E P ( T ) } . 

Note that P(V) is a convex subset of a Hubert space3 where y/A(ds) is the 
norm. Therefore À~1(T)=A(ds0) for the unique linear density ds0 of 
minimum norm in the closure C1P(T) of P(T). The following theorem 
characterizes the linear densities in CI P(T). 

THEOREM 11. CI P(T) consists of all nonnegative linear densities ds such 
that Jy dszi 1 for almost all y e V. 

We can now answer the question about extremal metrics. 

THEOREM 12. Let 0<A(T)< oo. There is a linear density ds0 which is the 
extremal metric for a subfamily r o c=r . T0 satisfies A (I 1 - r o )=oo , and 
hence A(ro)=A(T). The family V determines ds0 uniquely (a.e.) up to a 
positive multiplicative constant. 

3 The Hubert space consists of square integrable densities p\dz\ where the functions p 
are no longer required to be nonnegative. 
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Let us call the metric ds0 of Theorem 12 the generalized extremal metric 
for I \ It satisfies the following inequality, a consequence of the "law of 
cosines": 

THEOREM 13. If ds e Cl P(F), and if ds^ is the generalized extremal 
metric for V, then A(ds0)^A(ds)—A(ds—ds0). 

Next, I wish to present an explicit method for finding the extremal 
metric. The method is restricted to one-parameter curve families. However, 
it tes much wider applicability because it can often be applied to one-
parameter subfamilies of a general curve family (see §6 below). 

For each s £ (a, b), suppose cs: tt-^cs(t) is a curve in R. The domain of cs 

may depend on s; suppose it is an open interval ^(XX^^iC5)- We shall 
assume that R is a region in the x, j-plane, and that the mapping (s, t)-> 
cs(t)=(x,y) is 1-1 and has positive Jacobian determinant d(x,y)/d(s, t). 
Then the extremal length of the curve family T = {cs}a<s<b can be calcu­
lated exactly: 

THEOREM 14. Let 

Jt0(s) d(x9 y)ld(s, t) 
Then 

(10) - * - - P ^ . 
V X(Y) Jal(s) 

Theorem 14 can be considered as a generalization of the known formu­
las for calculating the extremal length of a family of parallel line segments, 
concentric circular arcs, and line segments on a pencil (cf. Theorems 2.4 
and 2.6 in M. Ohtsuka [9]). Integrals of the form (10) appeared in Ahlfors 
[1] and Warschawski [1]. I have not determined the weakest regularity 
conditions which would justify the following computations. 

For the proof of Theorem 14, define 

( 1 X) Po(cs(t)) = — • — — 
l(s) d(x9y)ld(s9t) 

where l(s) is given by (9). We shall show that p0(z)\dz\ is the extremal metric 
for T. We first note that JCs p0\dz\ = l for each cs: 

-cs{t) 
dt 

dt Po(z) \dz\ = Po(c,(0) 
e, Jt0(s) 

0u)l(s)'d(x,y)ld(s,t)~' l(s) JtAs) Us) 



596 BURTON RODIN [July 

Next, suppose that p(z)\dz\ is any linear density which satisfies 
Sc8 p(z)\dz\*i\ f ° r e a c h cs- Then for each s 

f [p(z) - Po(z)] \dz\ £ 0, 

\hU W.(0) - Po(cs(0)] 
J*0(s> rf* 

cs(0 df > 0, 

and so 

(12) ƒ h(s) j 

[p(c8(t)) - Po(cs(t))] dt 
cs(t) dt>0. 

0U) /(s) 

We integrate (12) for s e (a, b) and write the resulting inequality in the 
form 

JJW.W) - Po(cM]po(cMdjrj* ds dt ^ o, 
s 

which gives ƒ$R p(z)p0(z) dx dy^.$$R pl(z) dx dy. By use of the Schwarz 
inequality we then arrive at 

(13) \\p2 dx dy ^ \\pl dx dy. 

Equation (13) shows that p0\dz\ is the extremal metric. It can be used to 
calculate the extremal length: 

d(x, y) 

d(s, t) 
ds dt w'ij**"""!!*'™ 

J a Jto(s) d{x, y)/d(s, 0 1\S) J a l\s) Ja l(s) 

and we arrive at (10). As a corollary of the proof we obtain 

THEOREM 15. In the situation of Theorem 14, the extremal metric for F 
is 

, . x , , 1 \dc8(t)/dt\ 
Po(z) \dz\ = — — — - \dz\ 

l(s) d{x, y)ld(s91) 
where z=cs(0-

5. Extremal distance and function theoretic null-sets. Extremal length 
provides a link for relating geometric and function-theoretic quantities. 
This aspect can be illustrated by the several notions of extremal distance. 
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Let Si and s2 be disjoint subsets contained either in a Riemann surface R 
or on its border. Let T be the family of arcs in R which join sx and ,y2. The 
extremal length of F is then called the extremal distance between sx and s2, 
and it is denoted by X(sl9 s2). 

We can modify this definition by considering other ways in which a 
curve might be said to "join" sx and 5*2. For example, consider the 
Kerékjartó-Stoïlow compactification RK of R; RK is obtained by adding 
to R an ideal point for each boundary component of R. An arc on RK 

determines a curve on R. If an arc on RK joins sx to s2, the corresponding 
curve on R might be said to join sx to s2 "via the boundary components". 
Let r ^ consist of all arcs on RK which join st to s2, and let ÀK(sl9 s2) be 
the extremal length of the curve family on R determined by FK. Then 
AK(sl9 s2) is another notion of extremal distance between st and s2. 

A third notion of extremal distance is obtained by considering the one-
point compactification R^ of R. An arc on R^ which joins s1 to s2 deter­
mines a curve on R which joins sx to s2 "via the ideal boundary point". Let 
r ^ consist of all arcs on R^ which join s± to s2, and let X^(su s%) denote 
the extremal length of the corresponding curve family on R. 

Note that Tc: r ^ c T ^ when we consider these as curve families on R. 
Therefore the three notions of extremal distance satisfy 

(14) A(su s2) ;> AK(sl9 s2) > ^ ( j x , s2). 

The conditions for equality in (14) are related to function theoretic null-
sets: 

THEOREM 16. Let R be a plane region with complement E. The logarithmic 
capacity o f E vanishes if and only if A(sx, s2)=Ào0(s1, s2) for every pair of 
disjoint closed disks sl9 s2 contained in R. 

THEOREM 17. Let R be a plane region with complement E. The set E is 
a removable singularity for every Dirichlet finite analytic function if and only 
ifA(sl9 s2)=XK(sl9 s2)for every pair of disjoint closed disks sl9 s2 contained in 
R. 

Theorems 16 and 17 can be generalized to Riemann surfaces merely by 
replacing the conditions relating to E by the intrinsic conditions R e 0HD 

in Theorem 16, and R e 0KD in Theorem 17. Theorem 17 was proved in 
Rodin [4], and Theorem 16 was proved in Minda [1]. The earliest result 
of this type is due to Ahlfors-Beurling [4]; an extension to higher dimen­
sions is given in J. Vâisâlâ [3]. 

6. The classical origins. It has already been mentioned that extremal 
length had its roots in the techniques used over forty years ago to investi­
gate certain problems in complex analysis. It is of interest to see if the 
modern theory of extremal length can be profitably reapplied to those 
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original problems. A program of this sort was recently begun by J. Jen-
kins-K. Oikawa [6] (cf. also D. Gaier [1] and A. Obrock [1]). In addition 
to improving a result of Hayman, Jenkins and Oikawa showed that 
extremal length methods provide significant simplifications in the proofs 
of the fundamental inequalities of Ahlfors. 

One of the original problems was the behavior of the Riemann mapping 
function near a boundary point of the domain. Ahlfors introduced the 
useful normalization of applying a logarithmic transformation to the 
domain and range. The result is a conformai mapping w=f (z) of a strip 
domain S onto a parallel strip. As z tends to a certain infinite boundary 
element, ƒ (z) tends to +oo. 

Suppose that the strip domain S is determined by the graphs of two real 
valued functions y=ç>_(x) and y=(p+(x) : 

S = {z = x + iy | cp_{x) < y < ?>+(*)}• 
The conformai mapping w=f(z) sends S onto a parallel strip JR= 
{w=w+/i;|— 7T/2<I;<7T/2}, a n d / ( Z ) - > + O O as z-*+oo, z e S. There are a 
number of problems of interest in this situation. For example, what 
properties of cp_ and (p+ guarantee the existence of l i m ^ . ^ [ƒ(*)—z] 
(the problem of differentiability at the boundary) ? 

In their extremal length formulation, these kinds of questions lead to the 
problem of estimating extremal distance in a quadrilateral. Let Q = 
Ô(*o>*i) be the quadrilateral region {z=x+iy\ze S, XQKXKXJ. Let 
M=M(x0, xx) be the extremal length of all arcs in Q which join the 
vertical sides of Q. The crucial problem is to obtain useful estimates of M. 

Theorem 14 is useful for this purpose. It gives the exact extremal length 
of a one-parameter curve family. If Y is any one-parameter family of arcs 
in Q which join the vertical sides, then X(T) serves as an upper bound for 
M. If T* is a one-parameter family of arcs in Q which separate the vertical 
sides, then A_1(r*) serves as a lower bound for M. With judicious choices 
of T and T*, useful bounds on M can be obtained. (The bounds will be 
exact if T and T* correspond to the coordinate grid in the rectangular 
conformai image of Q.) 

An obvious first choice for Y is the family {c s} 0 < s < 1 , where c8(t)= 
t+i[stp_(t)+(l— s)<p+(t)] for xx<t<x^ An application of Theorem 14 

p l + WJjt) + (l - sK(Q]2
 dt 

Uo/(s)i =Jo 
p 3 + cp%t) + y;(0yl(Q + cp'Xt) ̂  

^ l C l U b 

(15) 

l(s) = 

A(D = 
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Thus the integral in (15) is an upper bound for M. It is essentially the same 
as the one derived by Jenkins-Oikawa [6] ; we have derived it in a different 
way. 

An obvious first choice for T* is the family {cs} of vertical line segments 
cs(t)=s+it (cp_(s)<t<(p+(s)). The calculation of ACT*) yields 

A(r*) J.lÇ>+(0-ç>-(0' 
The integral in (16) is therefore a lower bound for M. It also is the same 
as the lower bound derived by Jenkins-Oikawa. 

Substantial improvements in the bounds (15) and (16) can be obtained 
from more sophisticated choices of V and T*. This work is currently being 
carried out by Professor Warschawski and myself. In the case of symmetric 
regions, the use of circular arcs orthogonal to the graphs of <p_ and cp+ 

leads to a relatively simple derivation of the estimates in the remarkable, 
though difficult, paper of Gol'dberg-Strocik [1]. New estimates of wider 
applicability have been obtained by using other curve families. We are 
planning a joint publication on these topics in the near future. 
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