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1. Introduction. In this note, we announce some results concerning the 
distance-volume-decreasing property of harmonic quasiconformal map­
pings of Riemannian manifolds. Details will appear elsewhere. 

Let M and N be C00 Riemannian manifolds of dimensions m and n9 

respectively. Let f:M-+N be a C00 mapping. The Riemannian metrics of 
M and N can be written locally as ds\[=coï+- • '+o)2

m and dsx=<o*2+ 
' ' #+fc>*2> where cô  (1^/^m) and co* (l^a^ri) are linear differential 
forms in M and N, respectively. The structure equations in M are 

dc°ii = 2 œ** A œ*i "" Ô 2 RHMœk A <°l' 
i Zk.l 

Similar equations are valid in N and we will denote the corresponding 
quantities in the same notation with asterisks. Let/*co*=2*^?cOe. 
Then the covariant differential of A" is defined by 

DA\ s <L4? + £ Afat + 2 A< = 2 A>* 
o b 1 

with Aïj~Aa
H. The mapping ƒ is called harmonic (resp. totally geodesic) if 

2 , ^ = 0 ( r e s p . ^ , = 0 ) . 
If m=n, then at each point of M the matrix (A") has the adjoint (B*a). 

Let C be the scalar invariant 2 K^bAljA^. In [2], Chern and one of the 
authors proved the following theorems which may be regarded as ex­
tensions of Schwarz's lemma. 

THEOREM I. Let Bn be the n-dimensional open ball with the standard 
hyperbolic metric and N an n-dimensional Riemannian manifold. Let 
f:Bn-+N be a harmonic mapping satisfying the condition CrgO. If N is an 
Einstein manifold with scalar curvature R*^—4n(n—l)orifthe sectional 
curvature ofNis ^—4, then f is volume-decreasing. 
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THEOREM II. Let En be the n-dimensional euclidean space and let N be a 
Riemannian manifold of the same dimension. Let f:En-+N be a harmonic 
mapping satisfying the condition C^O. If N is an Einstein manifold with 
negative scalar curvature which is bounded away from zero or if the sectional 
curvature of N is negative and bounded away from zero, then f is volume-
decreasing. 

The differential/* o f / i s extended to the mapping A* f*:Ap T(M)-+ 
Ap T(N), i.e. the jpth exterior power of/*. Ap ƒ* is also regarded as an 
element of Ap T*(M)<g>Ap T(N) on which a norm is defined in terms of the 
Riemannian metrics of M and N. The norm \\AP /*| | is regarded as the 
ratio function of intermediate volume elements of M and N [7]. In par­
ticular, || A 1 /*| | = || ƒ *l| may be considered as the ratio of distances. When 
m=n, \\An /jell is the ratio of volume elements. 

The Laplacian of ||An /*| | in the case m = « plays an important role in 
[2]. In this paper, we apply the Laplacian A to ||/*||2 and obtain the 
following formula when ƒ is harmonic. 

(1) ( l / 2 ) A | | / J a = 2 0 4 ? , ) a + 2 K « ^ - 2 R*ahcdA\A)A\A% 
a.i.j a.i.j a.b .c.d',i ,j 

where Ri5 is the Ricci tensor of M (see also [3], [4]). This formula leads to 
several extensions of Schwarz's lemma as well as a generalization of 
Liouville's theorem and the little Picard theorem. 

2. Quasiconformal mappings. At each point x e M, let A be the 
matrix representation of (ƒ *)x relative to orthonormal bases of TX(M) and 
Tf(x)(N) and let lA be the transpose of A. In the sequel, we assume rank ƒ* = 
rank A=k at every point. Then A:^min(ra, n) and rank G=k9 where G is 
the positive semidefinite symmetric matrix lAA. Let Xx^i- • -^Afc> 
A&+1 = ' • •=Am=0 be the eigenvalues of G. The norm HA3*/*!! is represented 
as 

(2) llAVJI2- 2 V ' - V 

Hence, from Newton's inequalities, we obtain 

LEMMA 1. Let A:^min(m, n) and suppose rank/* is k everywhere on M. 
Then, 

(||AV*II2/(J;))1/3^ («A*/J , /(J))1 /" l^p^q^k. 

The notion of a ^-quasiconformal mapping of Riemannian manifolds 
is now extended to manifolds of different dimensions. (This should result 
in an extension of Wu's work on normal families of holomorphic mappings 
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[8].) At each point x e M, let S*"1 be a unit (fc-l)-sphere in TX(M). If 
( / ^ h a s maximal rank k, that is, if rank(/Hs)a,=/:=min(m, n), the image 
of S^1 under (ƒ *)x is an ellipsoid of dimension k— 1. 

DEFINITION. Let ƒ be a C00 mapping of maximal rank k (=min(ra, n)) 
and AT^l. ƒ is K-quasiconformal if at each point x of A/, the ratio of the 
largest to the smallest axis of the ellipsoid (f^xiS^1) in Tf{x)(N) 
^ K. 

One may verify that ƒ is .K-quasiconformal if and only if ÀJA^K2 at 
each point. Hence, from (2) we obtain 

LEMMA 2. Iff is K-quasiconformal, then 

3. Statement of results. First, with no assumption on the quasicon-
formality off formula (1) yields 

PROPOSITION 1. Let M be a compact manifold and N a manifold with 
nonpositive sectional curvature. Let f be a harmonic mapping o f M into N. 
If M is an Einstein manifold with positive scalar curvature R, or if the sec­
tional curvature of M is positive, then f is a constant mapping. 

PROPOSITION 2. Let the sectional curvature ofNbe nonpositive and f be 
a totally geodesic mapping. If M is an Einstein manifold with positive scalar 
curvature R, or if the sectional curvature of M is positive, then f is a con­
stant mapping. 

In the case when M and N have the same dimension n, then by means 
of Lemma 2, Theorem I gives 

PROPOSITION 3. Under the conditions in Theorem I with ƒ a K-quasi­
conformal mapping, 

l|AV*ll2 Û [n^JK\ l^p^n. 
In particular, 

f*(ds2
N)<:nK2ds2

B. 

We return now to the case where the dimensions of M and N are m and 
n, respectively. 

THEOREM 1. Let M and N be Riemannian manifolds of dimensions m and 
n respectively. Letf\M->N be a harmonic K-quasiconformal mapping with 
the function |[/\J attaining its maximum on M. If 

(a) the sectional curvature of M is bounded below by a nonpositive constant 
—A, or M is an Einstein manifold with scalar curvature R^—m(m—l)A, 
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and 
(b) the sectional curvature ofN is bounded above by a negative constant 

—B, then 

\\AvUfh £ (m - l//c - l)(kJ\AlB)Kl l^p^k, 
where &=min(ra, ri). 

This theorem improves and generalizes the results of Kiernan [5] and 
one of the authors [4]. The proof proceeds by first taking a maximum 
point x of ||/*||2. Then A J | / J | 2 < 0 and formula (1) yield 

2 ||A2/*II* ^ (m - 1)(A/B) \\fX-

From this, together with Lemmas 1 and 2, the results follow. 
In the case when k=m=n9 Theorem 1 implies that ƒ is volume-decreasing 

provided B=AK*. Moreover, for the ratio | | / J | of distances we have the 
following. 

COROLLARY. Under the assumptions in Theorem 1, 

||/*(X)||2 ^ (m - 1/fc - l)k(A/B)K* ||Jf||» 

for every tangent vector Xe T(M). If B=(m—llk—l)kAK*, then f is 
distance-decreasing. 

If in Proposition 3 the assumption that the curvature of N is ^ — 4 is 
replaced by the assumption that the curvature of N is :g — 4KA then the 
condition on the invariant C may be removed. 

THEOREM 2. Let Bm be the m-dimensional unit open ball with the hyper­
bolic metric of constant curvature —4. Let N be a Riemannian manifold 
with sectional curvature bounded above by a negative constant —B. Then, if 

ƒ : M->N is a harmonic K-quasiconformal mapping 

where A:=min(ra, n). 

COROLLARY 1. Under the conditions in Theorem 2 with B= 
4k(m—llk—l)Ké, the mapping f is distance-decreasing. 

COROLLARY 2. If in addition to the hypotheses of Theorem 2, dim N=m 
and B=4KA, the mapping f is volume-decreasing. 

REMARK. If X^>X^ • -^K^K+i^' ' - ^ m ^ O , the above results 
are still valid if the condition that ƒ be Z-quasiconformal is replaced by 
the condition (Q): At each point x of M, X^K2^ where J ^ l is a given 
constant and fc=min(ra, n). 

file:////fX-
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DEFINITION. A smooth mapping ƒ of an ra-dimensional Riemannian 
manifold M into an ^-dimensional Riemannian manifold N satisfying the 
condition (Q) is called a K-quasiconformal mapping in the generalized sense. 

Regarding Theorem II, the technique employed in establishing Theorem 
2 also yields 

THEOREM 3. Let N be an n-dimensional Riemannian manifold with 
negative sectional curvature bounded away from zero, and letf: Em-+N be a 
harmonic K-quasiconformal mapping in the generalized sense. Then, f is a 
constant mapping. 

The classical theorem of Liouville states that every bounded holomorphic 
function on the entire complex plane C is a constant. On the other hand, 
an entire function with two lacunary values must be a constant. This is the 
little Picard theorem. Theorem 3 generalizes Liouville's theorem as well as 
the little Picard theorem, the latter case being a consequence of the fact 
that the Gaussian plane minus two points carries a Kaehler metric of 
constant negative curvature. 
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