SMOOTH MAPS OF CONSTANT RANK

BY ANTHONY PHILLIPS

Communicated by William Browder, July 10, 1973

1. Introduction. In this announcement the Smale-Hirsch classification of immersions ([8], [5]) is extended to maps of arbitrary constant rank, under certain conditions on the source manifold.

THEOREM 1. If M is open and has a proper Morse function with no critical points of index >k, then the differential map $d: \operatorname{Hom}_k(M, W) \to \operatorname{Lin}_k(TM, TW)$ is a weak homotopy equivalence.

(A manifold with such a Morse function will be said to have geometric dimension $\leq k$. We will write geo dim $M \leq K$.)

Notation. M and W are smooth manifolds with tangent bundles TM, TW; $Hom_k(M, W)$ is the space of smooth maps of rank k from M to W, with the C^1 -compact-open topology; $Lin_k(TM, TW)$ is the space of continuous maps: $TM \rightarrow TW$ which are fiberwise linear maps of rank k, with the compact open topology; d(f) = df.

- REMARKS. 1. Weakening the hypotheses leads to false statements. If M is not open there are counterexamples when $k=\dim W$ as in [7]. Otherwise, take M to be the parallelizable manifold $S^{k+1}\times R$; then the identity map of M can be covered by $H\in \operatorname{Lin}_k(TM,TM)$ but H cannot be homotopic to the differential of an $f\in \operatorname{Hom}_k(M,M)$ since such an f (by Sard's theorem) would be null-homotopic. I owe this example to David Frank.
- 2. When $k=\dim M$ this gives the Smale-Hirsch theorem for open manifolds, but when $k=\dim W$ this does not give the full classification of submersions [7]. The missing cases will be considered in a future article. (ADDED IN PROOF. A necessary and sufficient condition for $H \in \operatorname{Lin}_k(TM, TW)$ to be homotopic to the differential of some $f \in \operatorname{Hom}_k(M, W)$ is given, for arbitrary open M, in M. L. Gromov, Singular smooth maps, Mat. Zametki 14 (1973), 509-516. It is equivalent to requiring that H factor through a k-dimensional bundle over a k-dimensional complex.) Immersions and submersions are the only overlap between this theorem and Feit's classification of k-mersions (maps of rank everywhere $\geq k$) [2]
 - 3. This theorem is not a special case of Gromov's theorem [3], since

AMS (MOS) subject classifications (1970). Primary 57D30, 57D35; Secondary 55F65, 57D40, 57D45, 58A30, 58C25, 58D10.

having rank k is not an open condition in general. We will, however, make heavy use of the ideas and results of [3] throughout this work.

4. A map of constant rank is locally a submersion followed by an immersion, i.e., a *subimmersion*. The ensuing local "stability" is the key to our proof. It also follows that inverse images of points under a map of constant rank foliate the source manifold. An application of Theorem 1 is then this weak form of a theorem of [4]. On an open manifold M of geometric dimension $\leq k$, any plane field σ of codimension k is homotopic to an integrable field. The proof is immediate, since projection onto the complementary bundle σ^{\perp} can be considered as a bundle map of rank k from TM to the tangent bundle of the total space of σ^{\perp} .

The proof of Theorem 1 has two main steps: First, the manifold M is assumed to be highly coconnected; then the general case is reduced to this special one.

2. Proof for highly coconnected manifolds. Let a(0)=a(1)=0, a(2)=a(3)=1, and $a(x)=\frac{1}{2}(x-1)$ if $x \ge 4$.

THEOREM 1'. Let dim M=n. If geo dim $M \le \min(a(n), k)$, then d: $\operatorname{Hom}_k(M, W) \to \operatorname{Lin}_k(TM, TW)$ is a weak homotopy equivalence.

The theorem proving machine ([3], [6]) reduces the proof to showing that the restriction map $\operatorname{Hom}_k(V, W) \to \operatorname{Hom}_k(U, W)$ has the covering homotopy property, when $U \subset V \subset M$ are *n*-dimensional submanifolds, and $V = U \cup \text{handle}$ of index $\lambda \leq \min(a(n), k)$. This is not true in general (see Figure 1), but, as pointed out to me by Edgar Feldman, the weak covering homotopy property [1] is sufficient (this allows a preliminary vertical homotopy; see below). Using 3.2.3 of [3] (*r*-microflexible implies *r*-flexible) we can further reduce our problem to the following lemma.

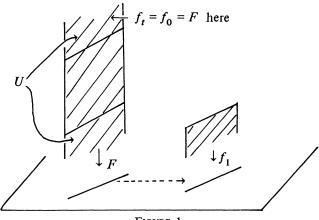


FIGURE 1

WEAK MICRO-COVERING HOMOTOPY LEMMA. Suppose we are given U, V as above, a compact P and continuous maps $F: P \rightarrow \operatorname{Hom}_k(V, W)$ and $f: P \times [0, 1] \rightarrow \operatorname{Hom}_k(U, W)$ with $f_{p,0} = F_p | U$ for $p \in P$. Then there exist $\varepsilon > 0$ and a continuous $\widetilde{F}: P \times [-1, \varepsilon] \rightarrow \operatorname{Hom}_k(V, W)$ with $\widetilde{F}_{p,-1} = F_p$ for $p \in P$, such that $\widetilde{F}_{p,t} | U = f_{p,0}$ if $t \leq 0$ and $t \leq 0$ and $t \leq 0$.

Sketch of proof. So as not to obscure the geometry, I will take P=a point and leave it out of the notation. We then consider $F \in \operatorname{Hom}_k(V, W)$ and a homotopy $f: I \to \operatorname{Hom}_k(U, W)$ with $f_0 = F|U$.

Let us admit¹ that the homotopy f_t is defined on a "collar neighborhood" N (as in [7]) of U in V. By Remark 4 above, there exists a disc D^n about any point of N such that $f_t|D^n$ is a subimmersion, for $0 \le t \le 1$. This suffices for the case $k=\lambda=1$ (everything is trivial when k=0): we construct an isotopy of N-U in itself which deforms the identity to a map pulling each component of N-U through such a D^n , across the foliation defined there by F (see Figure 2). Then after a preliminary homotopy defined by com-

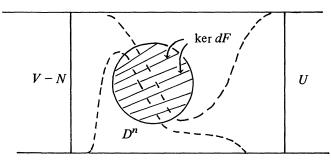


FIGURE 2

posing F with this isotopy, the stability of submersions and immersions can be used to give an initial lifting, as required. The deformation corresponding to the problem of Figure 1 might be as in Figure 3.

In general $N-U \cong S^{\lambda-1} \times D^{n-\lambda} \times I$. The subset corresponding to the

In general $N-U \cong S^{\lambda-1} \times D^{n-\lambda} \times I$. The subset corresponding to the two discs would be a tubular neighborhood of the "core" $S = S^{\lambda-1} \times \{0\} \times \{\frac{1}{2}\}$. If F|S is an immersion, then F subimmerses a tubular neighborhood T of S, and we proceed as before, using a preliminary isotopy which draws N-U through T, across the foliation defined in T by F.

It is clearly sufficient to show that S is isotopic to a sphere immersed by F; this is proved in three steps. First, using 5.2.1 of [3] and the hypothesis $\lambda \leq k$, the inclusion $i: S \rightarrow N - U$ is homotopic to an immersion i'

¹ This leap of faith is not required if, for $U \subset M$, $\operatorname{Hom}_k(U, W)$ is defined as inj $\lim \operatorname{Hom}_k(A, W)$, where A runs through the family of open neighborhoods of U in M, and is given the quasi-topology it inherits as inj $\lim \operatorname{See} [3, \S 2]$.

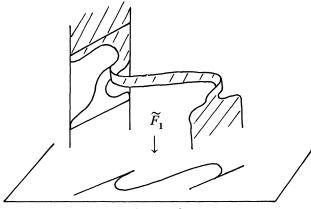


FIGURE 3

transverse to the foliation defined by F; then $F \circ i'$ is also an immersion. Next, since $\lambda \leq a(n)$ this immersion can be C^1 -approximated by an embedding i''. If the approximation is good enough, $F \circ i''$ will still be an immersion. Finally we use $\lambda \leq a(n)$ to conclude that i and i'' are isotopic.

3. Theorem 1' implies Theorem 1. Pick l sufficiently large so that geo dim $M \le a(n+l)$, and let $M' = M \times R^l$. This manifold satisfies the hypothesis of Theorem 1'. Give M a metric and M' the product metric. Let $p: M' \to M$ be the projection and $i: M \to M'$ the inclusion as $M \times \{0\}$.

I will prove that d induces a bijection of connected components, i.e. that $d_*: \pi_0 \operatorname{Hom}_k(M, W) \cong \pi_0 \operatorname{Lin}_k(TM, TW)$. Higher homotopy groups can be treated analogously.

- (a) d_* is onto. Given $H \in \operatorname{Lin}_k(TM, TW)$, the composition $H' = H \circ dp: TM' \to TW$ is homotopic to dF, for some $F \in \operatorname{Hom}_k(M', W)$, by Theorem 1'. The projection $TM \to \ker H^{\perp} = (\ker H')^{\perp} | M$ is therefore homotopic to an epimorphism $TM \to \ker dF^{\perp}$ covering i. It follows (see [3, 4.4.1], and [6]) that i is homotopic to a smooth map $\varphi: M \to M'$ transverse to $\ker dF$, and that H is homotopic to $d(F \circ \varphi)$, the differential of a map of rank k.
- (b) d_* is one-one. Suppose given $f, g \in \operatorname{Hom}_k(M, W)$ and a homotopy G_t in $\operatorname{Lin}_k(TM, TW)$ joining df to dg. Composing with dp gives an arc G_t' joining $d(f \circ p)$ to $d(g \circ p)$; by Theorem 1' the arc G_t' is homotopic with fixed endpoints to an arc dF_t , with $F_0 = f \circ p$, $F_1 = g \circ p$. It follows that the arc of projections $TM \to \ker G_t^{\perp} = (\ker G_t')^{\perp} | M$ is homotopic to an arc of epimorphisms $TM \to \ker dF_t^{\perp} | M$, which we consider as an arc H_t of maps $TM \to TM'$, with H_t transverse to $\ker F_t$. Assertion. This arc is homotopic through such arcs to the arc of the differentials of an arc $\varphi_t: M \to M'$ with φ_t transverse to $\ker F_t$. We return to this assertion in a

moment. It is easy to check, using [3] or [6] again, that i is homotopic to φ_0 through maps transverse to ker dF_0 , and homotopic to φ_1 through maps transverse to ker dF_1 , so that a homotopy in $\operatorname{Hom}_k(M, W)$ between f and g may be described by

$$f = F_0 \circ i \sim F_0 \circ \varphi_0 \sim F_1 \circ \varphi_1 \sim F_1 \circ i = g.$$

The assertion is an application of [3]. Let

$$A(M) = \{ H \in \text{Lin}(TM, TM')^I \mid H_t \text{ is transverse to ker } dF_t \text{ for } t \in I \}$$

and $B(M) = \{ f \in \text{Hom}(M, M')^I | d \circ f \in A(M) \}$. Here Hom(M, M') is the space of smooth maps: $M \rightarrow M'$ with the C^1 -compact-open topology, Lin(TM, TM') is the space of continuous, fiberwise linear maps: $TM \rightarrow TM'$ with the compact-open topology, and X^I is the space of continuous maps: $Y \rightarrow X$, with the compact-open topology. It follows from [3, 2.4.1, Corollary to 3.2.3 and 3.4.1] that the "differential" $d: B(M) \rightarrow A(M)$ is a w.h.e.

REFERENCES

- 1. A. Dold, Partitions of unity in the theory of fibrations, Ann. of Math. (2) 78 (1963), 223-255. MR 27 #5264.
 - 2. S. Feit, k-mersions of manifolds, Acta Math. 122 (1969), 173-195. MR 39 #4862.
- **3.** M. L. Gromov, Stable mappings of foliations into manifolds, Izv. Akad. Nauk SSSR **33** (1969), 707–734 = Math. USSR Izv. **3** (1969), 671–694. MR **41** #7708.
- 4. A. Haefliger, Feuilletages sur les variétés ouvertes, Topology 9 (1970), 183-194. MR 41 #7709.
- 5. M. Hirsch, *Immersions of manifolds*, Trans. Amer. Math. Soc. 93 (1959), 242-276. MR 22 #9980.
- **6.** A. Phillips, *Smooth maps transverse to a foliation*, Bull. Amer. Math. Soc. **76** (1970), 792–797. MR **41** #7711.
- 7. ——, Submersions of open manifolds, Topology 6 (1967), 171-206. MR 34 #8420.
- 8. S. Smale, The classification of immersions of spheres in Euclidean spaces, Ann. of Math. (2) 69 (1959), 327-344. MR 21 #3862.

Department of Mathematics, State University of New York, Stony Brook, New York 11790