ON A CLASS OF MINIMAL CONES IN Rⁿ

BY PLINIO SIMOES¹

Communicated by S. S. Chern, October 12, 1973

1. Introduction. In what follows let $S^p(\rho) = \{x \in \mathbb{R}^{p+1} | |x| = \rho\}$ and $S_{p,q} = S^p((p/(p+q))^{1/2}) \times S^q((q/(p+q))^{1/2}) \subset S^{p+q+1}(1)$. Let M be a codimension 1, closed minimal submanifold of $S^{n+1}(1)$ and $C(M) = \{tx \mid 0 < t < 1, x \in M\}$.

It is well known that C(M) is a minimal submanifold of \mathbb{R}^{n+2} . An important question is whether C(M) minimizes area in \mathbb{R}^{n+2} with respect to its boundary M. With respect to this question the following results are known:

(a) When $n \leq 5$, Simons [4] has given a negative answer.

(b) When $M = S_{p,p}$, $p \ge 3$, Bombieri-De Giorgi-Giusti [1] have given an affirmative answer.

(c) When $M = S_{p,q}$ and either $p+q \ge 7$ or p=q=3 Lawson [2], using a different approach from Bombieri-De Giorgi-Giusti, has given an affirmative answer.

(d) Lawson has also proved that when n=6 or n=7 the set of minimal cones C(M), that minimize area in \mathbb{R}^{n+2} with respect to their boundary M, is finite up to diffeomorphisms.

In this note we answer the question when $M=S_{p,q}$ with p+q=6.

2. **Results.** Using techniques related to those of Bombieri-De Giorgi-Giusti, we were able to prove in [3] the following two theorems:

THEOREM 1. If p+q=n and either

(a) $n \ge 7$ or

(b) n = 6 with $|p-q| \leq 4$,

then the cone $C(S_{y,q})$ minimizes area in \mathbb{R}^{n+2} with respect to its boundary $S_{y,q}$.

THEOREM 2. $C(S_{1,5})$ and $C(S_{5,1})$ do not minimize area in \mathbb{R}^8 with respect to their respective boundaries $S_{1,5}$ and $S_{5,1}$.

Copyright © American Mathematical Society 1974

AMS (MOS) subject classifications (1970). Primary 28A75; Secondary 26A63, 35D10, 46Fxx, 53A10.

Key words and phrases. Area minimizing current, rectifiable current, oriented tangent cone, plateau problem.

¹ Partially supported by Conselho Nacional de Pesquisas (Brazil).

Now let V be a C^2 vector field in \mathbb{R}^{n+2} , having compact support not containing $S^{n+1}(1)$ and let $\{\phi_t\}$ be its 1-parameter group of diffeomorphisms. We say that C(M) is stable if for any such vector field there is $\varepsilon > 0$ such that

Area of $\phi_t(C(M)) \ge$ Area of C(M) when $|t| < \varepsilon$.

By an argument similar to one in Simons [4] one may prove that $C(S_{1,5})$ and $C(S_{5,1})$ are stable.

So we have the following:

THEOREM 3. Although $C(S_{1,5})$ and $C(S_{5,1})$ are stable they do not minimize area in \mathbb{R}^8 with respect to their respective boundaries $S_{1,5}$ and $S_{5,1}$.

BIBLIOGRAPHY

1. E. Bombieri, E. De Giorgi and E. Giusti, *Minimal cones and the Bernstein problem*, Invent. Math. 7 (1969), 243-268. MR 40 #3445.

2. H. B. Lawson, Jr., *The equivariant Plateau problem and interior regularity*, Trans. Amer. Math. Soc. 173 (1972), 231–249.

3. P. Simoes, A class of minimal cones in \mathbb{R}^n , $n \geq 8$, that minimize area, Ph.D. thesis, University of California, Berkeley, Calif., 1973.

4. J. Simons, Minimal varieties in riemannian manifolds, Ann. of Math. (2) 88 (1968), 62–105. MR 38 #1617.

Instituto de Matematica, Universidade Federal do Ceara, Fortaleza, Ceara, Brazil