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1. Let X and Y be complex Banach spaces, A a bounded linear operator 
from X to Y. If the null space N(A) and the closed range R(A)~ possess 
closed complementary subspaces U in X and V in Y respectively, the 
pseudo-inverse A* of A relative to (U, V) is defined as the linear extension 
of (AlU)-1 to D(A*)=R(A)+V With the null space N(A*)=V. (This is a 
generalization to Banach space of the standard pseudo-inverse of a Hubert 
space operator (cf. [8]). If R(A) is closed, the definition agrees with the 
ones given in [1] and [7]. In this case A1 is defined and bounded on all 
of Y.) If U==R(B)~ and V=N(B) for some bounded linear operator 
B: Y-+X, Af will be called the pseudo-inverse of A relative to B, written 
AfE'. Proposition 6 of [6] leads to the following result. 

THEOREM 1. Suppose A.X-+Y and B:Y-^X are bounded linear 
operators such that (a) Y=R(A)~®N(B), (b) the operator T=I—BA is 
strongly power convergent ({Tn} converges strongly). Then AlB exists and is 
represented by 

(1) Awy = J (/ - BA)nBy, 

where the series converges in norm iffy e R(A)+N(B). 

When T in Theorem 1 is uniformly power convergent ({Tn} converges 
uniformly), then R(A) is closed, (1) converges uniformly, and AtB is 
defined and bounded on all of Y. In the case that A is an operator between 
Hubert spaces, and B=OLA* with 0<a<2| |^ | | - 2 , Theorem 1 gives the 
well-known representation of the standard Hubert space pseudo-inverse 
[2], [7], [8]. 

2. Let A:X->Y be a bounded linear operator between Banach spaces. 
A bounded linear operator B: Y-+Xis called a, pseudo-adjoint of A if 

(2) X = N(A) 0 R(B)~, Y = R(A)~ 0 N(B), 
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and if there exists a real function h on R(B) such that the operator 
T=I—OLBA (with a suitable a) satisfies 

(3) o < h(x) ^ (M2 - \\Tx\\*)\\x\\-* (x * o), h(0) = o, 

(4) h(Tx) ^ h(x). 

The adjoint A* of an operator A between Hubert spaces is its pseudo-
adjoint (/?(x) = a(2~aM||2) | | (v4*) tx| |-2 ,0<a<2|M||-2). An idempotent 
operator i on a Hubert space is its own pseudo-adjoint (h(x) = 
a ( 2 - a ) | | x | | - 2 , 0 < a < 2 ) . 

THEOREM 2. Let B be a pseudo-adjoint o f A (with a = 1 for simplicity). 
Then T=I—BA is a strongly power convergent operator. For each x e R(B)~, 
\\Tnx\\->0 monotonically, and 

\\Tnx\\* ^ ||x||2 (1 + nh(x) llxll2)"1 ifx e R(B). 

Proof is based on the inequality I|7,tt+Ijc||a^||rwjc||a-A(jc)||rwjc||4 

derived from (3) and (4) and the formula (4.11) of [8]. The next theorem 
generalizes Theorem 2(a) and (b) of [8] to operators between Banach 
spaces. 

THEOREM 3. Let B be a pseudo-adjoint of A (with a = l ) . Then 

(5) 2 (/ - BAfBy - i4t*X^ \\Awyf (1 + nh(AtBy) WA^yfT1 

IU=o II 

whenever the R(A)~ component o f y in Y=R(A)~®N(B) lies in R(AB). 
Moreover, the left-hand side of (5) converges monotonically to 0 for each 
yeR(A)+N(B). 

3. Let A.X-+Ybe a bounded linear operator, and let U be a comple­
ment of N(A) in X. The operator y4a = (v4|C/)-1 will be called the partial 
inverse o f A relative to U. 

THEOREM 4. Let A:X-^Y and B: Y—>X be bounded linear operators, 
with B bijective and such that T=I—-BA is strongly power convergent. 
Then A has the partial inverse Ad relative to U=R(BA)~, represented by 

00 

(6) A'y = 2V- BA)nBy, 

where the series converges iffy e R(A). 

When the convergence of {Tn} in the preceding theorem is uniform, 
R(A) is closed, Ad bounded, and the series (6) converges uniformly on 
bounded sets of R(A). 
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Both Theorems 1 and 4 can be applied to the approximate solution 
of the linear equation Ax=y by means of the Picard iterations 

(7) xn+1 = (/ - BA)xn + By (x0 given). 

In either case, if y e R(A), {xn} converges in norm to the solution x=Px0+ 
Ady of Ax=y, where Px0 is the N(A) component of x0 in X=N(A)®> 
R(BA)~. (In the case of Theorem 1, Ady=A*By and R(BA)-=R(B)~.) 

4. The strong power convergence of the operator T.X-+X is the main 
hypothesis of Theorems 1 and 4. Various conditions for power converg­
ence have been given in [2], [3], [4], [5]. It was shown in [5] that UP is 
uniformly power convergent iff a(T)—{l} lies in the open unit disc and 1 
is a pole of (ÀI—T)"1 of order £51 (cr(T) denotes the spectrum of T). 
The following three results can be obtained from this theorem. 

THEOREM 5. Suppose R(I— T) is closed and the continuous spectrum ofT 
does not meet the unit circle. Then the weak, strong and uniform power 
convergence of T are all equivalent. 

The proof is based on the decomposition T= T0^T± of a weakly power 
convergent T, where T0=l\N(I-T) and 7'1=r|iî(/—71)" [6]. 

THEOREM 6. Let T be power bounded, R(I— T) closed, and let I— T 
have finite descent. Then T is uniformly power convergent ijf ct(T)—{1} 
does not meet the unit circle. 

To prove Theorem 6, we show that N((I-T)2)=N(I-T) under the 
assumptions of the theorem. 

The following result is a consequence of Theorems 5 and 6. 

COROLLARY 1. Suppose that T is power bounded andf(T) compact, 
where ƒ is a complex function analytic in an open neighborhood of a(T) 
with no zeros on o(T)-{0} such that (a) |/(A)|<1 i / |A |<1 , ( b ) / ( l ) = l , 
and (c) ƒ ' (1 )^0 . Then T is weakly (=strongly=uniformly) power conver­
gent iff a(T) — {l} does not meet the unit circle. 

The next three theorems give sufficient conditions of the Stein type 
(cf. [5]) for power convergence of Hubert space operators. In the sequel, 
A, Tand Ware bounded linear operators on a Hubert space H. 

THEOREM 7. LetA=A*, and A —T* AT be positive definite on R(I—Ty. 
Then the following conditions are equivalent', (i) {Tn} converges uniformly, 
(ii) {Tn} converges strongly, (iii) A is positive definite on R(I—T)~. 
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THEOREM 8. Suppose the identity 

(8) A - T*AT = (/ - T*)W(I - T) 

holds with A and W positive definite on H. Then T is strongly power con­
vergent. 

THEOREM 9. Suppose the identity (8) holds with A and W positive 
definite on R(I—T)~. If I—T is an operator of finite descent, then T is 
uniformly power convergent. 

We outline the proof of the last theorem. We establish N(I—T)C\ 
R(I-T)-={0} by showing that (Ax, x)=(Ax, h) for each x=*(I-T)u+h. 
Hence X=N(I-T)eR(I-T) with R(I-T) closed. The rest is easy. 
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