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1. Introduction. We wish to consider the following two problems 
for E9 F, G Banach spaces over the complex field C and i f (E; F), 
Jf(F; G),3f(E;G) the corresponding spaces of holomorphic functions 
between them (we follow the definitions and notation given in [3]): 
(1) For what vector subspaces X^3tf{E\ F), Y<=Jf(F; G), Zajf(E; G) 
and corresponding locally convex topologies rx, r F , rz will the compo­
sition <f>: (ƒ, g) e (X, rx) X (7 , rY)^g of e (Z, rz) be holomorphic? (2) 
Investigate the holomorphy of </>:^(U; V)xJe(V; W)-+J>f(U; W) for 
£ƒ<=£, V^F, W^G open. We are driven to consider general locally 
convex topologies on X, Y9 Z since if <f> holomorphic means it is separately 
continuous, then, in particular, the evaluation ƒ G {2tf(F\ C), r)h->f(x) e C 
is continuous. But from [1] and [2], if F is, for example, a separable 
or reflexive infinite dimensional Banach space, then r is not first countable. 

2. Definitions of holomorphy [4]. Let X and Y be complex locally 
convex spaces (LCS), and W an open, nonempty subset of X. Then 
ƒ : W-> Y is said to be holomorphic if for every f G W there is a sequence 
Pm G é?(mX; Y) (the space of continuous m-homogeneous polynomials 
from X to F), ra=0, 1, • • • , such that for each continuous seminorm /? 
on Y, one can find a neighborhood F of f in W for which 

Jim j8 
M->oo 

M 

/(x)-2p-(*-£) = 0 

uniformly for x e F. ƒ is said to be G-holomorphic (provided Xis Hausdorff) 
if for each | G W, X G X, the map X e V\-+f(Ç+Àx) G F is holomorphic, 
where V={X e C:ij+Àx G W}. We denote the space of holomorphic 
(G-holomorphic) maps by 2tf(W\ Y) (3fG(W; Y)). ƒ is said to be amply 
bounded if for each continuous seminorm /? on Y, /? o ƒ is locally bounded. 
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If ƒ is continuous, or locally bounded, then it is amply bounded. 
The space of amply bounded maps is denoted s/âS{W\ Y). Then 

JtaiW; Y) n s/&(W; Y) = ^(W\ Y). 

3. Topologies. We shall consider the locally convex topologies 
on Jf(U; F) (E, F Banach spaces, U^E open, nonempty) as given in 
[3]. In particular, r0 denotes the compact-open topology, rœ the topology 
of seminorms ported by compact subsets of U, rx the topology of semi-
norms ported by all open covers of U, and rô the bornological topology 
associated with r0. We let J^b(U; F) be the space of holomorphic functions 
of bounded type with its natural topology r0b. 

We have the following chain of inequalities r0^roo^r(r^Tn<r(O^rô 

and Tô\j(?b^T0b. Tô\jtb = r0b, that is, r0b is the bornological topology 
associated with r 0 | j f b if and only if (for U f-balanced) J^b(U; F)= 
^f(U\ F). Dineen [2] has shown, however, that if in the dual of E every 
bounded sequence has a weak* convergent subsequence, for example 
if E is separable or reflexive, then Jfb(E; C)^^(E\ C), and so 
Jfb(U; F)*^(U; F). 

4. Basic setting for the problem. We consider first Problem 2. Assume 
U^E, V g F are open and nonempty. To avoid manifolds we need 
Jf(U; V) open in 3&(U\ F) or a vector subspace, but the latter occurs 
exactly when V=F. 

PROPOSITION 1. If U=E, or if jeb(E;C)^J^(E;C) when U^E, 
then Jf(U; V) is not open in (Jf(U; F), rx). 

For A c t/and J^c: j f ( t / )=JT(£/ ;C) , we define the J^-convex hull of A 
to be 

A* = {xeU: \f(x)\ <: | ƒ \A for all ƒ e JF}, 

where \f\A=s\ip{\f(x)\:x e A}. U is said to be Jf((7)-convex (resp. 
J^&((7)-convex) if for every compact (resp. £/-bounded) subset K of U, 
jfcjrdj) (resp. Rj#>b(u)) is compact (resp. (/-bounded), where A is a U-
bounded subset of U if it is bounded (in E) and, if U^E, the distanôe from 
A to the boundary of U is not zero. If U is convex (in particular, all of 
£) , then it is J(?b(U)-convQX and so J4? (U)-conwQX. 

PROPOSITION 2. If U is J^b(U)-convex, then 3^b(U; V) is not open 
in (3fh(U; F)9 r0b). 

PROPOSITION 3. If U is Jt?(U)-convex, then J^(U; V) is not open in 
(JT(U; F), rm). 

Hence, the setting for the problem we shall choose is to consider 
X<=JT(U; F), Y<z3f(F; G), and Z<^^(U; G). 
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5. G-holomorphy of </>. We investigate the holomorphy of $ by 
examining separately when it is G-holomorphic and amply bounded. 
We may reduce the problem by using a theorem of Nachbin [4] which 
implies that if M is a LCS, W an open subset of M, and TX(N)^T2(N) 
locally convex topologies on a vector space N such that the T^AQ-closure 
of every T2(A^)-bounded set is r2(A^)-bounded (designated condition 
(A)), then 

&G(W\ NX) n s/.#(W; N2) = J4T(W; N2) 

where Ni = (N9Tt(N)) for / = 1 , 2 . Condition (A) is implied by (B): 
every rx(iV)-bounded subset of N is r2(^-bounded, or (C): r2(N) is 
locally Ti(iV)-closed (that is, r2(N) has a base of neighborhoods of zero 
which are ^(JVJ-closed). 

Set W= (X, rx) x ( Y, rY) where XcJT(U;F)9 Y a ^{F\ G) are vector 
subspaces, and ^ = (^(11; G), r0). Since r0b(^b(U; G)) is locally 
r0(J^b(U; G))-closed, so (C) applies, and rô(Jt(U; G)) is the bornological 
topology associated with r0(Jf (U; G)), so (B) applies, and since all the 
topologies introduced above lie between r0b or rö and r0, then it suffices 
only to show </> is amply bounded for the given topologies, since it is 
G-holomorphic for all locally convex Hausdorff topologies rx, rY when 
Ti(JV)=r0. 

6. Ample boundedness of ^. Let J( be a collection of subsets of U. 
Let XJt be the space of holomorphic functions in X<^J(f(U; F) which 
are bounded on each WE Jt', and give it the LCS topology defined by 
the family of seminorms (| • \w)WeJi. Let ZM be defined similarly for 
Z c f # ( [ / ; G), and let 7be a vector subspace of Jf{F\ G). Let Z£ designate 
a collection of subsets of F of the form JS(X^, ^)={Be(^f)W)(f(W)): 
feXj?,We^} where e:Xj?xJ?->R+ and Br(A)=A+r(x: \\x\\<l). 
Then the basic result is 

PROPOSITION 4. If X contains all the constant functions, then </>: 
X^x ( 7 , jY)-+Zjt is amply bounded if and only if there is an open cover 
J£ of F such that (Y, rY)c:^(F; G)j continuously. This last implies 
T^TA(7) . 

PROPOSITION 5. (i) If </>:Jtr(U; F)Mx{^{F\ G), r F ) - * J f (U; G)M is 
amply bounded, then ^{F\ G)=34?b(F; G) (andrY^TX). 

(ii) 7 / * T F ^ T 0 & , then the converse of (i) is true. 

For example, taking J( in Proposition 4 to be the compact (resp. 17-
bounded) subsets of U yields r0 (resp. r0&). Arguing directly, we also get 
$'.(34?(U; F), T) X (Jfb(F; G), r0h)-»(JP(U; G), r) is amply bounded when 
T=Too> T<r» a n d (when C/is |-balanced) rw. 
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REMARKS. We may repeat the above investigation for E, F, G locally 
convex spaces instead of just Banach spaces. If F is Hausdorff and G 
seminormed, then the generalized form of Proposition 5 yields </>: 
(3F(U; F), r0)x(J^(F; G), rF)->(Jf(C/; G), r0) amply bounded implies 
Fis normable and J^(F; G)=JTb(F; G). 
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