A NOTE ON ANOSOV DIFFEOMORPHISMS

BY ROBERT J. SACKER¹ AND GEORGE R. SELL²

Communicated by Walter Gottschalk, August 28, 1973

- 1. **Introduction.** In this note we shall study a class Γ of diffeomorphisms on a compact *n*-dimensional manifold M. The class Γ will include all diffeomorphisms F with the property that the periodic points of F are dense in M. Our main theorem will give a characterization of those diffeomorphisms in Γ that are Anosov diffeomorphisms.
- 2. Statement of results. Let $F: M \rightarrow M$ be a diffeomorphism on a compact *n*-dimensional manifold M and let $DF: TM \rightarrow TM$ be the induced derivative mapping on the tangent bundle of M. The mapping F is said to be an *Anosov diffeomorphism* if the tangent bundle can be decomposed into a continuous Whitney sum $TM = E^s + E^u$, such that
 - (i) E^s and E^u are invariant under DF;
- (ii) $DF: E^s \rightarrow E^s$ is contracting, i.e., there exist positive constants K and λ , $\lambda < 1$, such that

$$||DF^m(v)|| \le K\lambda^m ||v||$$

for all $v \in E^s$ and $m \in Z^+$;

(iii) $DF: E^u \rightarrow E^u$ is expanding, i.e., there exist positive constants k and μ , $\mu > 1$, such that

$$||DF^m(v)|| \ge k\mu^m ||v||$$

for all $v \in E^u$ and $m \in Z^+$, cf. [1], [3], and [6].

Since DF is a homeomorphism, the composed mapping DF^m is defined for all $m \in \mathbb{Z}$, and this defines a discrete flow on TM. Similarly F^m is a discrete flow on M, and these flows commute with the natural projection $p:TM\to M$. Now let Γ denote the collection of all diffeomorphisms $F:M\to M$ such that the union of the minimal sets of the flow F^m is dense in M. For example, if the periodic points of F are dense in M, then $F \in \Gamma$.

For any diffeomorphism $F: M \rightarrow M$ we define the sets \mathcal{B} , \mathcal{S} , \mathcal{U} in

AMS (MOS) subject classifications (1970). Primary 58F15; Secondary 34C35.

¹ The first author was partially supported by U.S. Army Grant DA-ARO-D-31-124-71-G176.

² The second author was partially supported by NSF Grant GP-38955.

the tangent bundle TM by

$$\mathcal{B} = \{ v \in TM : ||DF^m(v)|| \text{ is bounded uniformly for } m \in Z \},$$

$$\mathcal{S} = \{ v \in TM : ||DF^m(v)|| \to 0 \text{ as } m \to +\infty \},$$

$$\mathcal{U} = \{ v \in TM : ||DF^m(v)|| \to 0 \text{ as } m \to -\infty \}.$$

In the theorem, which we next state, the sets \mathscr{S} and \mathscr{U} will take the role of E^s and E^u . However we want to emphasize that the contracting and expanding properties described by (1) and (2) are *not* included in the definition of \mathscr{S} and \mathscr{U} ; they follow as one of the consequences of our theorem.

THEOREM. Let $F: M \rightarrow M$ be a diffeomorphism on a compact n-dimensional manifold M and assume that $F \in \Gamma$. Then F is an Anosov diffeomorphism if and only if $\mathcal{B} = TM_0$, the zero section of TM. Moreover, in this case \mathcal{S} and \mathcal{U} are subbundles of TM which are invariant under the flow DF^m , $TM = \mathcal{S} + \mathcal{U}$ (Whitney sum), $DF: \mathcal{S} \rightarrow \mathcal{S}$ is contracting, and $DF: \mathcal{U} \rightarrow \mathcal{U}$ is expanding.

3. Outline of proofs. The proof of this theorem is included in a paper in which we study the general problem of (discrete and continuous) linear flows on vector bundles [4]. The results in this paper also have important applications in the theory of linear differential equations with almost periodic coefficients.

The proof of the necessity of the condition $\mathcal{B}=TM_0$ follows directly from the definition of an Anosov diffeomorphism. The proof of the sufficiency of this condition is accomplished as follows: For $y \in M$ define the fibers

$$\mathcal{S}(y) = p^{-1}(y) \cap \mathcal{S}, \qquad \mathcal{U}(y) = p^{-1}(y) \cap \mathcal{U},$$

and define

$$A^{+} = \{v \in \mathcal{S}: ||DF^{m}(v)|| \le 1 \text{ for all } m \in Z^{+}\},$$

$$A^{-} = \{v \in \mathcal{U}: ||DF^{-m}(v)|| \le 1 \text{ for all } m \in Z^{+}\}.$$

Note that $\mathcal{S}(y)$ and $\mathcal{U}(y)$ are linear subspaces of T_yM , the tangent space of M at y.

Step 1. A^+ and A^- are compact sets in TM and there is a σ , $0 < \sigma < 1$, such that $\{v \in \mathcal{S} : ||v|| \le \sigma\} \subseteq A^+$, and $\{v \in \mathcal{U} : ||v|| \le \sigma\} \subseteq A^-$.

Step 2. $\mathscr S$ and $\mathscr U$ are closed sets and $||DF^m(v)|| \le \sigma^{-1}||v||$ for all $v \in \mathscr S$ and $m \in Z^+$, and $||DF^{-m}(v)|| \le \sigma^{-1}||v||$ for all $v \in \mathscr U$ and $m \in Z^+$.

Step 3. The functions dim $\mathcal{S}(y)$ and dim $\mathcal{U}(y)$ are upper semicontinuous functions of y.

Step 4. \mathscr{S} and \mathscr{U} are invariant under DF and $DF: \mathscr{S} \rightarrow \mathscr{S}$ is contracting and $DF: \mathscr{U} \rightarrow \mathscr{U}$ is expanding.

Step 5. If y belongs to a minimal set for the flow F^m on M, then

(3)
$$\mathscr{S}(y) + \mathscr{U}(y) = T_y M.$$

The proof of Step 5 uses essentially a duality argument and reduces to examining properties of the intersection number of singular chains in \mathbb{R}^n .

Since (3) holds over a dense set in M we show, using Steps 2 and 3, that \mathcal{S} and \mathcal{U} are subbundles and that $TM = \mathcal{S} + \mathcal{U}$ (Whitney sum).

REMARKS. (1) By using a known property of Anosov diffeomorphisms [7], the condition $\mathcal{B}=TM_0$, for $F \in \Gamma$, then implies that the periodic points of F form a dense set in M. Also see [3, p. 116].

(2) If one does not assume that the set $N=\{\text{union of the minimal sets}$ of the flow $F^m\}$ is dense in the manifold M, then it still follows, using our general theory [4], that one gets a corresponding splitting of the tangent bundle over the closure \overline{N} .

We show in [5] that this splitting can be extended to all of M provided the dimension of the fiber $\mathcal{S}(y)$ is the same over every minimal set. This fact has also been discovered independently by R. Mañé Ramirez [2] by different techniques.

REFERENCES

- 1. D. V. Anosov, Roughness of geodesic flows on compact Riemannian manifolds of negative curvature, Dokl. Akad. Nauk SSSR 145 (1962), 707-709=Soviet Math. Dokl. 3 (1962), 1068-1070. MR 26 #716.
 - 2. R. Mañé Ramirez, Persistent manifolds are normally hyperbolic (to appear).
 - 3. Z. Nitecki, Differentiable dynamics, M.I.T. Press, Cambridge, Mass., 1971.
- 4. R. J. Sacker and G. R. Sell, Existence of dichotomies and invariant splittings for linear differential systems. I, J. Differential Equations (to appear).
- 5. _____, Existence of dichotomies and invariant splittings for linear differential systems. II (to appear).
- **6.** S. Smale, *Differentiable dynamical systems*, Bull. Amer. Math. Soc. **73** (1967), 747–817. MR **37** #3598.
- 7. P. Walters, Anosov diffeomorphisms are topologically stable, Topology 9 (1970), 71-78. MR 40 #8069.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTHERN CALIFORNIA, LOS ANGELES, CALIFORNIA 90007

SCHOOL OF MATHEMATICS, UNIVERSITY OF MINNESOTA, MINNEAPOLIS, MINNESOTA 55455