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1. The famous Hadamard three-circles theorem of the complex func­
tion theory has been generalized to solutions of elliptic and parabolic equa­
tions. For references as well as for some interesting applications we refer 
to [3]. The purpose of this note is to show that (a) three circles (spheres)-
theorems lead naturally to a sharpened version of the boundary point 
maximum principle (see [1], [2]), and (b) to prove a Hadamard type 
theorem for a quasilinear equation. 

2. Let G= {x; x e Rn, \x\ <a}, u be a nonconstant solution of Aw^O, 
which is of class C2 in G and continuous in G. Let 

(1) M{r) = Max{i/(x): |x| = r} 

for OO^tf. The strong maximum principle implies that M(r) is a strictly 
increasing function of r. The Hadamard theorem states that M(r) is a 
convex function of s, where s=logr for n=2 and s=— r2~n for #>2. 
Define ƒ(s)=M(r). Since ƒ is a convex function it possesses a left-hand 
derivative ƒL(s) on (0, s(a)]9 and since s is a differentiate function of r 
M has the left-hand derivative ML(r)=fL(s)(ds/dr). (Note that although 
the chain rule is not generally valid for one-sided derivatives it can be used 
here. Note also that fL(a) can be infinite.) It will be proved now that 
ML(a)>0. Assume contrary to what one wishes to prove that ML(a)^0. 
Then we would have /L(s)^0 at s=s(a) and hence for all s e (0, s(a)] 
since ƒ ! is increasing. Hence Mi(r)^0 for r e (0, a]. However M!_(r)^0 
since Mis increasing; and it would follow that ML(r)=0 and M(r)=const. 
By the strong maximum principle u would be constant—contradiction. 
Hence we have proved ML(a)>0. 
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Let y be that point on 5={x; |x|=a} where u reaches its maximum 
and x a point on the normal to S at y. Then 

u(x) - u(y) M(r) - M(a) 
\x — y\ ~~ « — r 

Hence 

(2) lim sup ^ —M_(a) < 0. 
x-*v',xsn \X — y \ 

We have arrived at the following sharpened version of the boundary 
point maximum principle. 

THEOREM. If 

(i) u is a solution of Aw^O which is of class C2 in G and which is con­
tinuous in G9 

(ii) M(r) is defined by (1), and 
(iii) u(x)<u(y)for \x\<a, \y\=a9 

then (2) holds. 

This theorem can be easily generalized to linear elliptic partial differen­
tial inequalities, since the proof hinges only on the strong maximum 
principle and on the convexity obtained from the Hadamard theorem. 

3. Consider now the quasilinear operator 

E(u) = V a{j(x, u, grad w)Z>4Z),w — c(x, u9 grad u) 

where the functions aiô{x9u9p) and c(x9u9p) are defined for all x in 
D={x; xeRn

9 a<\x\<b,}9 all ueR' and all/? e IT. We shall assume 
that aH and c are Lipschitzian in p at 0; more precisely we shall assume 
that there is a constant L such that 

(3) \atj(x9 u9p) - au(x9 u9 0)| ^ L \p\9 

(4) c(x9 u9p) — c(x, u9 0) ^ — L \p\. 

The C2 solutions to the inequality E(u)tt0 then satisfy the strong maximum 
principle (see e.g. [4]) if 

(5) 2 *«(*> M> °) V i ^ m J ^ ™ > 0, 
*.i=l 1 

and 
(6) c(x, II, 0) ^ 0 

for x e D9 u e R1 (or just for u=u(x) the solution in question). 
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Since the solution to E(u)^.0 cannot have a maximum inside D9 the 
function M(r) is either increasing or decreasing or first decreasing and 
then increasing. To obtain a Hadamard type theorem one has to consider 
separately the intervals where M(r) increases or decreases (cf. [3, p. 134]). 

THEOREM. If 

(i) u is continuous in D and of class C2 in D9 

(ii) there exists a constant M such that \DiDju\^M in Z>, 
(iii) E(u)^0 in D, 
(iv) M(r) is defined by (1) and is a strictly increasing function of r for 

a<:r<:b, 
(v) 2 ? - I * « ( * > K > 0 ) < C , 

(vi) the inequalities (3), (4), (5) and (6) are satisfied for all xe D and 
for all real A4 in the case of (5), 
then there exists a strictly increasing function v=v(r) such that M(r) is a 
convex function of v. 

REMARK. The theorem remains valid if the phrase 'strictly increasing' 
in (iv) and in the conclusion of the theorem is replaced by the phrase 
'strictly decreasing'. 

The following elementary lemma is easy to prove. 

LEMMA. Let M and v be continuous strictly increasing (decreasing) 
functions on [a,b]. Then M is a convex function ofv if and only if the fol­
lowing condition is satisfied: for every y^O and every interval [a, /?]<= [a, b] 
the function M(r)—yv(r) attains its maximum either at a or at /?. 

PROOF OF THE THEOREM. Let v be a solution of v"= — ((Ajr)+B)v' with 
y4>0, B>0 and such that */>0. (Such a solution can be found by quadra­
ture.) The constants A and B will be chosen later. Let us assume, contrary 
to what we want to prove, that M(r)—yv(r) for some positive y attains 
its maximum over [a, j8] in (a, /?). Then the function w(x)=u(x)—yv(r) 
attains its maximum over {x; a^|;c|^/?} at an interior point x0. Define an 
auxiliary linear operator E0(z) = ^ij=slaij(x9u90)DiD;fZ. Then'£0(w)^0 
at x0. The proof will be completed by showing E0(w)>0 at x0. We have 
a t X •—- XQ 

E0(w) ^ E0(u) - E(u) - c(x, ii, 0) - yE0(v) 

^ -L(n2M + l ) |gradt i | 

i.3=l 
t/'-V + ô,,-

r r 

-L(n2M + l)yv' 
n 

r r 

XjX j 

rz 

XjXj 

r3 
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Since v"<0, v'>0 we have 

EM > y j - 7 / - V L(n2M + l) + -2«u(^w,0) 
rM 

r r A) 

E0(w) > (my/2){-t>" - (2v'lm)[L(ri2M + 1) + (C - m)/r]} 
= (my/2)[-t;ff - i/(04/r) + B)] = 0. 

REMARK. The function v(r) depends on the bound for the second 
derivatives; it is an interesting problem whether or not this dependence 
can be removed. It is fairly obvious from the proof that the assumption 
(ii) is superfluous if the operator is linear. 

REMARK. The theorem of this paragraph leads to a sharpened version 
of the boundary point maximum principle for the operator E{u) analogous 
to that proved in paragraph 2 for subharmonic functions. 
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