THE ITERATIVE SOLUTION OF THE EQUATION $y \in x+T x$ FOR A MONOTONE OPERATOR T IN HILBERT SPACE ${ }^{1}$

BY RONALD E. BRUCK, JR.
Communicated by R. Creighton Buck, March 5, 1973

Abstract. Suppose T is a multivalued monotone operator with open domain $D(T)$ in a Hilbert space and $y \in R(I+T)$. Then there exist a neighborhood $N \subset D(T)$ of $\bar{x}=(I+T)^{-1} y$ and a real number $\sigma_{1}>0$ such that for any $\sigma \geqq \sigma_{1}$, any initial guess $x_{1} \in N$, and any single-valued section T_{0} of T, the sequence generated from x_{1} by

$$
x_{n+1}=x_{n}-(n+\sigma)^{-1}\left(x_{n}+T_{0} x_{n}-y\right)
$$

remains in $D(T)$ and converges to \bar{x} with estimate $\left\|x_{n}-\bar{x}\right\|=O\left(n^{-1 / 2}\right)$. The sequence $\left\{x_{n}+T_{0} x_{n}\right\}$ converges $(C, 1)$ to y. No continuity assumptions of any kind are imposed on T_{0}.

If H is a real or complex Hilbert space with inner product (\cdot, \cdot), a multivalued monotone operator on H is a subset T of $H \times H$ for which $\operatorname{Re}(u-v, x-y) \geqq 0$ whenever $[x, u],[y, v] \in T$. We write $T x$ for $\{y \in H:[x, y] \in T\}, D(T)=\{x: T x \neq \varnothing\}$ (the effective domain of T), $T(A)=\bigcup\{T x: x \in A\}$ if $A \subset H$, and $R(T)=T(H) . I$ denotes the identity operator on H, so $I+T=\{[x, x+y]:[x, y] \in T\}$ and $(I+T)^{-1}=$ $\{[x+y, x]:[x, y] \in T\} . T$ is locally bounded at x if there exists a neighborhood N of x (in the norm topology) for which $T(N)$ is bounded. A singlevalued section of T is a subset T_{0} of T for which $T_{0} x$ is a singleton set for each x in $D(T)$; we follow the traditional abuse of terminology and refer to $T_{0} x$ as the element in the singleton set.

One of the earliest problems in the theory of monotone operators was to solve the equation $y \in x+T x$ for x, given an element y of H and a monotone operator T. The initial existence theorems (Vainberg [10], Zarantonello [12]) were constructive in nature, but assumed that the operator T was single-valued and Lipschitzian; later existence results (Minty [7], Browder [1]) were proven under unusually weak continuity assumptions on T, but were nonconstructive in nature. Subsequent iteration methods have weakened the Lipschitz assumptions on T (Petryshn [8], Zarantonello [11]).

In this note we return to the iterative techniques, with the difference that we make no assumptions of continuity. Supposing that the equation $y \in x+T x$ has a solution x, we calculate that solution as the limit of an iteratively constructed sequence with an explicit error estimate. Naturally,

[^0]the sequence of iterates converges more slowly than in the Lipschitzian case-the error estimate is $O\left(n^{-1 / 2}\right)$ instead of $O\left(c^{n}\right)$ for some $0<c<1$.

Theorem. Suppose T is a multivalued monotone operator with open domain $D(T)$ in a Hilbert space H and $y \in R(I+T)$. Then there exist a neighborhood $N \subset D(T)$ of $\bar{x}=(I+T)^{-1} y$ and a real number $\sigma_{1}>0$ such that for any $\sigma \geqq \sigma_{1}$, any initial guess $x_{1} \in N$, and any single-valued section T_{0} of T, the sequence $\left\{x_{n}\right\}$ generated from x_{1} by

$$
\begin{equation*}
x_{n+1}=x_{n}-(n+\sigma)^{-1}\left(x_{n}+T_{0} x_{n}-y\right) \tag{1}
\end{equation*}
$$

remains in $D(T)$ and converges to \bar{x} with estimate $\left\|x_{n}-\bar{x}\right\|=O\left(n^{-1 / 2}\right)$. The sequence $\left\{x_{n}+T_{0} x_{n}\right\}$ converges $(C, 1)$ to y.

Remark. The iteration (1) is a normal Mann process in the sense of Dotson [3] (see also Mann [6]).

Proof of Theorem. It is well known that $(I+T)^{-1}$ is a single-valued mapping, so $\bar{x}=(I+T)^{-1} y$ is uniquely defined. Choose $\bar{u} \in T \bar{x}$ such that $y=\bar{x}+\bar{u}$. As an aside we note that if already $y \in R\left(I+T_{0}\right)$ then $\bar{u}=T_{0} \bar{x}$ because $\left(I+T_{0}\right)^{-1} \subset(I+T)^{-1}$.

A monotone operator is locally bounded at each interior point of its effective domain (Browder [2], Rockafellar [9]); thus Tis locally bounded at \bar{x}, and we may choose $N=B_{d}(\bar{x})$, the closed ball of radius $d>0$ centered at \bar{x}, in such a way that $N \subset D(T)$ and $T(N)$ is bounded. Put $\sigma_{1}=[\operatorname{diam} T(N) / d]^{2}$. Then $\sigma_{1}>0$ and

$$
\begin{equation*}
\operatorname{diam} T(N) \leqq d \sigma^{1 / 2} \text { if } \quad \sigma \geqq \sigma_{1} \tag{2}
\end{equation*}
$$

Put $t_{n}=(n+\sigma)^{-1}, d_{n}=(n+\sigma-1)^{-1 / 2}$. Starting with an initial guess $x_{1} \in N$ and any single-valued section T_{0} of T, define a sequence $\left\{x_{n}\right\}$ inductively by (1). That $\left\{x_{n}\right\}$ can in fact be continued indefinitely follows from

$$
\begin{equation*}
\text { for all } n \geqq 1, x_{n} \text { is well defined and }\left\|x_{n}-\bar{x}\right\| \leqq d_{n} d \sigma^{1 / 2} \tag{3}
\end{equation*}
$$

We prove (3) by induction on n.
For $n=1, x_{n}$ is certainly well defined and $\left\|x_{n}-\bar{x}\right\| \leqq d_{1} d \sigma^{1 / 2}=d$ because x_{1} was originally chosen from $B_{d}(\bar{x})=N$. Next suppose that (3) has been proven for a particular value of n. Then

$$
\left\|x_{n}-\bar{x}\right\| \leqq d_{n} d \sigma^{1 / 2} \leqq d_{1} d \sigma^{1 / 2}=d
$$

so $x_{n} \in N \subset D(T)=D\left(T_{0}\right)$; thus x_{n+1} is well defined by (1). Since $y=\bar{x}+\bar{u},(1)$ also implies

$$
x_{n+1}-\bar{x}=\left(1-t_{n}\right)\left(x_{n}-\bar{x}\right)-t_{n}\left(T_{0} x_{n}-\bar{u}\right)
$$

so

$$
\begin{align*}
\left\|x_{n+1}-\bar{x}\right\|^{2}= & \left(1-t_{n}\right)^{2}\left\|x_{n}-\bar{x}\right\|^{2}-2 t_{n}\left(1-t_{n}\right) \\
& \cdot \operatorname{Re}\left(T_{0} x_{n}-\bar{u}, x_{n}-\bar{x}\right)+t_{n}^{2}\left\|T_{0} x_{n}-\bar{u}\right\|^{2} \tag{4}\\
\leqq & \left(1-t_{n}\right)^{2}\left\|x_{n}-\bar{x}\right\|^{2}+t_{n}^{2}\left\|T_{0} x_{n}-\bar{u}\right\|^{2}
\end{align*}
$$

since $T_{0} x_{n} \in T x_{n}, \bar{u} \in T \bar{x}, T$ is monotone, and $t_{n}\left(1-t_{n}\right)>0$. But we also have $\left\|T_{0} x_{n}-\bar{u}\right\| \leqq \operatorname{diam} T(N)$ since $T_{0} x_{n}$ and \bar{u} belong to $T(N)$, so when (2) and (4) are combined with the induction hypothesis $\left\|x_{n}-\bar{x}\right\| \leqq$ $d_{n} d \sigma^{1 / 2}$ there results

$$
\left\|x_{n+1}-\bar{x}\right\|^{2} \leqq\left[\left(1-t_{n}\right)^{2} d_{n}^{2}+t_{n}^{2}\right] d^{2} \sigma=d_{n+1}^{2} d^{2} \sigma
$$

so that $\left\|x_{n+1}-\bar{x}\right\| \leqq d_{n+1} d \sigma^{1 / 2}$. This completes the proof of (3) by induction. Since $d_{n}=O\left(n^{-1 / 2}\right)$ we have also established the error estimate of the Theorem.

As for the $(C, 1)$ convergence of $\left\{x_{n}+T_{0} x_{n}\right\}$ to y, we readily establish by induction the identity

$$
x_{n+1}=\frac{\sigma}{n+\sigma} \cdot x_{1}-\frac{1}{n+\sigma} \cdot \sum_{i=1}^{n}\left(T_{0} x_{i}-y\right)
$$

so that $n^{-1} \cdot \Sigma_{i=1}^{n} T_{0} x_{i}=y-x_{n+1}+\sigma n^{-1}\left(x_{1}-x_{n+1}\right)$. It follows that

$$
(C, 1) \lim _{n \rightarrow \infty} T_{0} x_{n}=y-\bar{x}
$$

Since $x_{n} \rightarrow \bar{x}$ strongly, also

$$
(C, 1) \lim _{n \rightarrow \infty} x_{n}=\bar{x}
$$

so finally $(C, 1) \lim _{n \rightarrow \infty}\left(x_{n}+T_{0} x_{n}\right)=y$. Q.E.D.
Corollary. Suppose T is a continuous single-valued monotone operator with open domain $D(T)$ in a Hilbert space H and $y \in R(I+T)$. Then there exists a neighborhood $N \subset D(T)$ of $\bar{x}=(I+T)^{-1} y$ such that for any initial guess $x_{1} \in N$ the sequence generated from x_{1} by

$$
\begin{equation*}
x_{n+1}=\frac{n}{n+1} x_{n}-\frac{1}{n+1}\left(T x_{n}-y\right) \tag{5}
\end{equation*}
$$

remains in $D(T)$ and converges to \bar{x} with estimate $\left\|x_{n}-\bar{x}\right\|=O\left(n^{-1 / 2}\right)$.
Remark. This iteration has been considered for different families of mappings by Johnson [5] and Franks and Marzec [4].

Proof of Corollary. By the Theorem there exist a neighborhood N_{1} of \bar{x} and a positive integer σ such that the sequence $\left\{z_{n}\right\}$ generated from an initial guess $z_{1} \in N_{1}$ by

$$
\begin{equation*}
z_{n+1}=z_{n}-(n+\sigma)^{-1}\left(z_{n}+T z_{n}-y\right) \tag{6}
\end{equation*}
$$

converges to \bar{x} with error estimate $O\left(n^{-1 / 2}\right)$. The continuity of T at \bar{x} guarantees the existence of a neighborhood N of \bar{x} such that for any initial guess $x_{1} \in N$, the first σ terms of the sequence $\left\{x_{n}\right\}$ defined by (5) remain in N_{1}. Taking $z_{1}=x_{\sigma} \in N_{1}$ and generating $\left\{z_{n}\right\}$ by (6), we have $x_{n}=z_{n-\sigma+1}$ for $n \geqq \sigma$. Thus $\left\{x_{n}\right\}$ remains in $D(T)$ and $x_{n} \rightarrow \bar{x}$ with error estimate $O\left((n-\sigma+1)^{-1 / 2}\right)=O\left(n^{-1 / 2}\right)$. Q.E.D.

References

1. F. E. Browder, Nonlinear elliptic boundary value problems, Bull. Amer. Math. Soc. 69 (1963), 862-874. MR 27 \#6048.
2. - Nonlinear monotone and accretive operators in Banach spaces, Proc. Nat. Acad. Sci. U.S.A. 61 (1968), 388-393. MR 44 \# 7389.
3. W. G. Dotson, Jr., On the Mann iterative process, Trans. Amer. Math. Soc. 149 (1970), 65-73. MR 41 \# 2477.
4. R. L. Franks and R. P. Marzec, A theorem on mean value iterations, Proc. Amer. Math. Soc. 30 (1971), 324-326. MR 43 \#6375.
5. G. G. Johnson, Fixed points by mean value iterations, Proc. Amer. Math. Soc. 34 (1972), 193-194. MR 45 \# 1006.
6. W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510. MR 14, 988.
7. G. J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J. 29 (1962), 341-346. MR 29 \#6319.
8. W. V. Petryshn, On the extension and solution of nonlinear operator equations, Illinois J. Math. 10 (1966), 255-274. MR 34 \#8242.
9. R. T. Rockafellar, Local boundedness of nonlinear, monotone operators, Michigan Math. J. 16 (1969), 397-407. MR 40 \# 6229.
10. M. M. Vaĭnberg, On the convergence of the method of steepest descent for nonlinear equations, Sibirsk. Mat. Ž. 2 (1961), 201-220. (Russian) MR 23 \# A4026.
11. E. H. Zarantonello, The closure of the numerical range contains the spectrum, Bull. Amer. Math. Soc. 70 (1964), 781-787. MR 30 \#3389.
12. - Solving functional equations by contractive averaging, Mathematics Research Center Technical Report No. 160, Madison, Wis., 1960.

Department of Mathematics, University of Southern California, Los Angeles, California 90007

[^0]: AMS (MOS) subject classifications (1970). Primary 47H05, 47H10; Secondary 47H15.
 ${ }^{1}$ Supported by NSF Grant GP-30221.

