THE ITERATIVE SOLUTION OF THE EQUATION $y \in x + Tx$ FOR A MONOTONE OPERATOR T IN HILBERT SPACE¹

BY RONALD E. BRUCK, JR.

Communicated by R. Creighton Buck, March 5, 1973

ABSTRACT. Suppose T is a multivalued monotone operator with open domain D(T) in a Hilbert space and $y \in R(I + T)$. Then there exist a neighborhood $N \subset D(T)$ of $\bar{x} = (I + T)^{-1}y$ and a real number $\sigma_1 > 0$ such that for any $\sigma \ge \sigma_1$, any initial guess $x_1 \in N$, and any single-valued section T_0 of T, the sequence generated from x_1 by

$$x_{n+1} = x_n - (n + \sigma)^{-1}(x_n + T_0 x_n - y)$$

remains in D(T) and converges to \bar{x} with estimate $||x_n - \bar{x}|| = O(n^{-1/2})$. The sequence $\{x_n + T_0x_n\}$ converges (C, 1) to y. No continuity assumptions of any kind are imposed on T_0 .

If H is a real or complex Hilbert space with inner product (\cdot, \cdot) , a multivalued monotone operator on H is a subset T of $H \times H$ for which $\operatorname{Re}(u - v, x - y) \geq 0$ whenever [x, u], $[y, v] \in T$. We write Tx for $\{y \in H: [x, y] \in T\}$, $D(T) = \{x: Tx \neq \emptyset\}$ (the effective domain of T), $T(A) = \bigcup \{Tx: x \in A\}$ if $A \subset H$, and R(T) = T(H). I denotes the identity operator on H, so $I + T = \{[x, x + y]: [x, y] \in T\}$ and $(I + T)^{-1} = \{[x + y, x]: [x, y] \in T\}$. T is locally bounded at x if there exists a neighborhood N of x (in the norm topology) for which T(N) is bounded. A single-valued section of T is a subset T_0 of T for which T_0x is a singleton set for each x in D(T); we follow the traditional abuse of terminology and refer to T_0x as the element in the singleton set.

One of the earliest problems in the theory of monotone operators was to solve the equation $y \in x + Tx$ for x, given an element y of H and a monotone operator T. The initial existence theorems (Vainberg [10], Zarantonello [12]) were constructive in nature, but assumed that the operator T was single-valued and Lipschitzian; later existence results (Minty [7], Browder [1]) were proven under unusually weak continuity assumptions on T, but were nonconstructive in nature. Subsequent iteration methods have weakened the Lipschitz assumptions on T (Petryshn [8], Zarantonello [11]).

In this note we return to the iterative techniques, with the difference that we make *no* assumptions of continuity. Supposing that the equation $y \in x + Tx$ has a solution x, we calculate that solution as the limit of an iteratively constructed sequence with an explicit error estimate. Naturally,

AMS (MOS) subject classifications (1970). Primary 47H05, 47H10; Secondary 47H15.

¹ Supported by NSF Grant GP-30221.

the sequence of iterates converges more slowly than in the Lipschitzian case—the error estimate is $O(n^{-1/2})$ instead of $O(c^n)$ for some 0 < c < 1.

THEOREM. Suppose T is a multivalued monotone operator with open domain D(T) in a Hilbert space H and $y \in R(I + T)$. Then there exist a neighborhood $N \subset D(T)$ of $\bar{x} = (I + T)^{-1}y$ and a real number $\sigma_1 > 0$ such that for any $\sigma \geq \sigma_1$, any initial guess $x_1 \in N$, and any single-valued section T_0 of T, the sequence $\{x_n\}$ generated from x_1 by

(1)
$$x_{n+1} = x_n - (n + \sigma)^{-1}(x_n + T_0 x_n - y)$$

remains in D(T) and converges to \bar{x} with estimate $||x_n - \bar{x}|| = O(n^{-1/2})$. The sequence $\{x_n + T_0x_n\}$ converges (C, 1) to y.

REMARK. The iteration (1) is a normal Mann process in the sense of Dotson [3] (see also Mann [6]).

PROOF OF THEOREM. It is well known that $(I + T)^{-1}$ is a single-valued mapping, so $\bar{x} = (I + T)^{-1}y$ is uniquely defined. Choose $\bar{u} \in T\bar{x}$ such that $y = \bar{x} + \bar{u}$. As an aside we note that if already $y \in R(I + T_0)$ then $\bar{u} = T_0 \bar{x}$ because $(I + T_0)^{-1} \subset (I + T)^{-1}$.

A monotone operator is locally bounded at each interior point of its effective domain (Browder [2], Rockafellar [9]); thus T is locally bounded at \bar{x} , and we may choose $N = B_d(\bar{x})$, the closed ball of radius d > 0 centered at \bar{x} , in such a way that $N \subset D(T)$ and T(N) is bounded. Put $\sigma_1 = [\text{diam } T(N)/d]^2$. Then $\sigma_1 > 0$ and

(2) diam
$$T(N) \leq d\sigma^{1/2}$$
 if $\sigma \geq \sigma_1$.

Put $t_n = (n + \sigma)^{-1}$, $d_n = (n + \sigma - 1)^{-1/2}$. Starting with an initial guess $x_1 \in N$ and any single-valued section T_0 of T, define a sequence $\{x_n\}$ inductively by (1). That $\{x_n\}$ can in fact be continued indefinitely follows from

(3) for all $n \ge 1$, x_n is well defined and $||x_n - \bar{x}|| \le d_n d\sigma^{1/2}$.

We prove (3) by induction on n.

For n = 1, x_n is certainly well defined and $||x_n - \bar{x}|| \leq d_1 d\sigma^{1/2} = d$ because x_1 was originally chosen from $B_d(\bar{x}) = N$. Next suppose that (3) has been proven for a particular value of n. Then

$$||x_n - \bar{x}|| \leq d_n \, d\sigma^{1/2} \leq d_1 \, d\sigma^{1/2} = d$$

so $x_n \in N \subset D(T) = D(T_0)$; thus x_{n+1} is well defined by (1). Since $y = \bar{x} + \bar{u}$, (1) also implies

$$x_{n+1} - \bar{x} = (1 - t_n)(x_n - \bar{x}) - t_n(T_0 x_n - \bar{u})$$

R. E. BRUCK, JR.

[November

so

(4)

$$||x_{n+1} - \bar{x}||^{2} = (1 - t_{n})^{2} ||x_{n} - \bar{x}||^{2} - 2t_{n}(1 - t_{n})$$

$$\cdot \operatorname{Re}(T_{0}x_{n} - \bar{u}, x_{n} - \bar{x}) + t_{n}^{2} ||T_{0}x_{n} - \bar{u}||^{2}$$

$$\leq (1 - t_{n})^{2} ||x_{n} - \bar{x}||^{2} + t_{n}^{2} ||T_{0}x_{n} - \bar{u}||^{2}$$

since $T_0x_n \in Tx_n$, $\bar{u} \in T\bar{x}$, T is monotone, and $t_n(1 - t_n) > 0$. But we also have $||T_0x_n - \bar{u}|| \leq \text{diam } T(N)$ since T_0x_n and \bar{u} belong to T(N), so when (2) and (4) are combined with the induction hypothesis $||x_n - \bar{x}|| \leq d_n d\sigma^{1/2}$ there results

$$||x_{n+1} - \bar{x}||^2 \leq \left[(1 - t_n)^2 d_n^2 + t_n^2 \right] d^2 \sigma = d_{n+1}^2 d^2 \sigma,$$

so that $||x_{n+1} - \bar{x}|| \leq d_{n+1} d\sigma^{1/2}$. This completes the proof of (3) by induction. Since $d_n = O(n^{-1/2})$ we have also established the error estimate of the Theorem.

As for the (C, 1) convergence of $\{x_n + T_0x_n\}$ to y, we readily establish by induction the identity

$$x_{n+1} = \frac{\sigma}{n+\sigma} \cdot x_1 - \frac{1}{n+\sigma} \cdot \sum_{i=1}^n (T_0 x_i - y),$$

so that $n^{-1} \cdot \sum_{i=1}^{n} T_0 x_i = y - x_{n+1} + \sigma n^{-1} (x_1 - x_{n+1})$. It follows that $(C, 1) \lim_{n \to \infty} T_0 x_n = y - \bar{x}.$

Since $x_n \to \bar{x}$ strongly, also

$$(C, 1)\lim_{n\to\infty} x_n = \bar{x},$$

so finally $(C, 1) \lim_{n \to \infty} (x_n + T_0 x_n) = y$. Q.E.D.

COROLLARY. Suppose T is a continuous single-valued monotone operator with open domain D(T) in a Hilbert space H and $y \in R(I + T)$. Then there exists a neighborhood $N \subset D(T)$ of $\bar{x} = (I + T)^{-1}y$ such that for any initial guess $x_1 \in N$ the sequence generated from x_1 by

(5)
$$x_{n+1} = \frac{n}{n+1} x_n - \frac{1}{n+1} (Tx_n - y)$$

remains in D(T) and converges to \bar{x} with estimate $||x_n - \bar{x}|| = O(n^{-1/2})$.

REMARK. This iteration has been considered for different families of mappings by Johnson [5] and Franks and Marzec [4].

PROOF OF COROLLARY. By the Theorem there exist a neighborhood N_1 of \bar{x} and a positive integer σ such that the sequence $\{z_n\}$ generated from an initial guess $z_1 \in N_1$ by

(6)
$$z_{n+1} = z_n - (n + \sigma)^{-1}(z_n + Tz_n - y)$$

1260

converges to \bar{x} with error estimate $O(n^{-1/2})$. The continuity of T at \bar{x} guarantees the existence of a neighborhood N of \bar{x} such that for any initial guess $x_1 \in N$, the first σ terms of the sequence $\{x_n\}$ defined by (5) remain in N_1 . Taking $z_1 = x_{\sigma} \in N_1$ and generating $\{z_n\}$ by (6), we have $x_n = z_{n-\sigma+1}$ for $n \ge \sigma$. Thus $\{x_n\}$ remains in D(T) and $x_n \to \bar{x}$ with error estimate $O((n - \sigma + 1)^{-1/2}) = O(n^{-1/2})$. Q.E.D.

REFERENCES

1. F. E. Browder, Nonlinear elliptic boundary value problems, Bull. Amer. Math. Soc. 69 (1963), 862-874. MR 27 #6048.

2. ——, Nonlinear monotone and accretive operators in Banach spaces, Proc. Nat. Acad. Sci. U.S.A. 61 (1968), 388–393. MR 44 #7389.

3. W. G. Dotson, Jr., On the Mann iterative process, Trans. Amer. Math. Soc. 149 (1970), 65-73. MR 41 #2477.

4. R. L. Franks and R. P. Marzec, A theorem on mean value iterations, Proc. Amer. Math. Soc. 30 (1971), 324-326. MR 43 #6375.

5. G. G. Johnson, Fixed points by mean value iterations, Proc. Amer. Math. Soc. 34 (1972), 193-194. MR 45 # 1006.

6. W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510. MR 14, 988.

7. G. J. Minty, *Monotone (nonlinear) operators in Hilbert space*, Duke Math. J. **29** (1962), 341–346. MR **29** #6319.

8. W. V. Petryshn, On the extension and solution of nonlinear operator equations, Illinois J. Math. 10 (1966), 255–274. MR 34 #8242.

9. R. T. Rockafellar, Local boundedness of nonlinear, monotone operators, Michigan Math. J. 16 (1969), 397-407. MR 40 #6229.

10. M. M. Vaïnberg, On the convergence of the method of steepest descent for nonlinear equations, Sibirsk. Mat. Ž. 2 (1961), 201–220. (Russian) MR 23 # A4026.

11. E. H. Zarantonello, The closure of the numerical range contains the spectrum, Bull. Amer. Math. Soc. 70 (1964), 781–787. MR 30 # 3389.

12. ——, Solving functional equations by contractive averaging, Mathematics Research Center Technical Report No. 160, Madison, Wis., 1960.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTHERN CALIFORNIA, LOS ANGELES, CALIFORNIA 90007