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0. Summary. This paper deals with the analysis and recognition of 
two-dimensional set patterns deformed by certain deformation mecha­
nisms. The emphasis is on exploiting the form of the image algebra and 
the behavior of the deformations. In this way higher recognition efficiency 
is obtained by using structure-preserving restoration. 

1. The structure of patterns. Patterns can be described through the 
following general formalism. They are generated from primitives called 
signs and denoted by s, s e ^ . Finite vectors c = (cu c2, . . . , cm) e %> 
are called configurations and in the set # of all legal configurations an 
equivalence relation JR gives rise to equivalence classes ƒ called images. 
A set of rules M determines what configurations are legal. The set 2T of 
resulting images is called the image algebra. Expressing configurations 
just as vectors is sufficient when we have just one binary operation 
between signs. If several binary operations are used a more expressive 
notation is needed; see below. The images I are the objects that can be 
observed (under ideal conditions) and, depending upon the way they 
have been generated, they are grouped into pattern classes gPa forming a 
family âP of patterns. The reader is referred to Grenander (1970) for more 
details. 

Under actual conditions the images cannot be observed exactly. 
Instead, a deformation mechanism Q) maps the set 2T of pure images into 
a set ZT® of deformed images. The purpose of pattern analysis is to describe 
the generation of ZT, the mapping into ZT®, and to design algorithms for the 
analysis and recognition of I given I® or, at least, the partial restoration of I. 
Finally this will be used for classification into the pattern classes 0*a. 

The main difficulty is usually caused by the way that Q) obscures the 
view of the pure image ƒ. Often the deformation mechanism 3) is not even 
discussed explicitly, but only assumed vaguely when the recognition 
algorithm is suggested. In this paper we shall show how to take Q) into 
account for the special case of two-dimensional set patterns and for a 
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certain choice of 3). For other ®'s of background deformation type, see 
Grenander (1970) and Kowalczyk (1972). 

In the present case the signs are certain convex, closed subsets of the 
plane. Starting from a set Proto of prototypes we transform them by the 
action of a group G of transformations g of the plane onto itself. G is made 
up of three groups: Trans = translations, Rot = rotations, and Scale = 
scale changes of R2. We may also let G be some subgroup of these. This 
means that 

(1.1) <f = G Proto. 

Lebesgue area will be denoted by m. 
Signs will be combined by unions and intersections and we shall also 

allow complements to be taken. The relation R will be used to identify the 
resulting sets. If two configurations A and B are equivalent modulo R, 
A = B (mod JR), this means that the two resulting sets are identical, not 
that they have been generated in the same way. If A is included in B, for 
example, then the images A and A n B are equivalent although the 
configurations are different. 

In general, if B is a Boolean function in k variables and if s l9 s2, . . . , 
sk e ^ then we can speak of the image 

(1.2) / = B(sus2, . . . , 5 k ) , 

assuming of course that the constraint 01, to be defined below, is not 
violated. 

Let us mention a few examples that will be used repeatedly in the 
following sections. If Proto consists only of the single prototype = C = 
unit circle and if G = Trans x Scale, we get, for example, the disjunctive 
images in Figure 1.1(d) and the conjunctive images in Figure 1.1(a), (b), (c). 
With the prototype S{ = squares,/ = 1,2, we can generate the conjunctive 
image in Figure 1.1(e). Many other shapes can be obtained from the same 
prototypes but it should be observed that only small values of k are of 
interest in (1.2) since otherwise the flexibility is so large that almost any 
shape can be well approximated by the resulting images and the algebra 
has little influence in governing the shape of the images. 

We shall treat three different deformation mechanisms that are closely 
related. 

Q)\. I2 is a sample of n points drawn at random from a uniform distribu­
tion over I. 

22.12 is the realization of a Poisson process with density A over I (no 
points outside of / ) . 

23.l& is the realization of a Poisson process with density Àx inside of ƒ 
and X2 outside of/, with Ax > À2. 
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(«) (*) (c) 

(glQU(g2c) te,s,)n(~*2s2) 
FIGURE 1.1 

It is well known that ^ 1 can be considered a conditional form of Q)2, 
fixing the number of points, so that they can be treated in almost the same 
way. Also, Q)2 is a special case of @3. 

In the following sections we shall devise methods for restoring I through 
some set I * calculated from the observed point cluster Is. Of course we 
would like ƒ * to be close, in some sense, to the pure image I. 

We shall approach our task from two directions. First we shall use the 
special properties of the image algebra and in particular exploit the 
behavior of the boundary dl of I. The deformed image I® does not have 
any nontrivial boundary, strictly speaking. Nevertheless, we shall use 
"boundary" properties of ƒ to estimate dl and then go on to / itself. To do 
this we shall introduce a number of boundary statistics. 

In later sections we shall not use the boundary properties of I® as 
directly as mentioned, although they will still appear implicitly. Finally, 
we shall design methods that do not use at all the algebra underlying the 
image algebra ZT\ it can be expected that such very general algorithms are 
less efficient in restoring images known to belong to F than the ones that 
take advantage of the algebraic structure. This will lead us to study 
structure-preserving methods of pattern analysis. We shall begin this in 
the present paper; the study will be continued in Grenander and La vin 
(1973). 
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If Is = {z1? z2, . . . , z„}, where each zt is a point in the plane, the 
likelihood function (whose argument is the unknown image ƒ) is 

r[m(/)]-w if/* cz / , 
(1.3) M'H A 

I 0 else, 
so that the likelihood estimator ƒ* is the one that solves the minimum 
problem 

(1.4) mil) = min. 

This is for Q)\. For ^ 2 we get instead of (1.3) 

(1.4) L2(/) = A J e x i K - ^ / ) ^ ) 

if we treat the z's as unordered; otherwise the expression should be 
divided by n !. The ML-estimator is still given by (1.4). If ^ 3 is the deforma­
tion mechanism we get instead 

(1.5) L3(7) = k\x exp(-A1m(/))/l2
2 exp(-^2m(/c)) 

where Ie stands for the complement of/, nl is the number of z's inside / 
and n29 inside Ie. The ML-estimator is obtained by solving the minimum 
problem 

(1.6) (À1 — A2)m(I) — n log(A1/A2) = min. 
J e J 

Once we possess efficient means of restoring and recognizing images the 
final problem of identifying pattern classes is a good deal closer to its 
solution (see Grenander (1970)). 

By statistical geometry we mean the study of how to restore pure geometric 
objects when we can only observe deformed versions of them. 

The problem studied in this paper concerns the identification of objects 
in a given space. Another area of statistical geometry is devoted to the 
identification of intrinsic properties of the space itself. Such properties 
could be metric, connectivity, and neighborhood relations. Problems of 
this nature will be investigated in a subsequent paper. 

It could be said that statistical geometry is the inverse to geometric 
probability, that elegant chapter of the calculus of probability, also related 
to integral geometry. For presentations of these areas we refer the reader 
to Blaschke (1955), Deltheil (1920) and Santaló (1936). 

2. The circle. We shall begin by the simplest possible case when the 
image is just a circle, described through the three parameters, the radius 
R and the coordinates x0, y0 of its center. In other words, we have just a 
three-dimensional image algebra generated from the prototype = unit 
circle and the group G of similarity transformations mentioned in §1. 



1973] STATISTICAL GEOMETRY: TOOL FOR PATTERN ANALYSIS 833 

First, let x0 = y0 = 0 and let us estimated. As in the more general case, 
we could appeal to (1.4). It is interesting that the computational problem 
has been studied in terms of a numerically efficient algorithm by Bass and 
Schubert (1967). Since we want algorithms that can be generalized to more 
challenging image algebras we shall use boundary features instead. 

Of course, we could use standard linear-quadratic estimators of these 
three parameters. However, as we shall see, higher efficiency can be 
obtained by using boundary features. Also, the methods based on bound­
ary features are more robust and likely to warn us if the shape deviates 
considerably from a circle. 

It seems reasonable that simple algorithms based on diameters of I® 
should be informative. By a diameter in the ^-direction is meant the 
distance between the two support lines of I2 in a direction orthogonal to (j). 

It is important to get algorithms that are invariant under G, and diameters 
obviously are. They are also easy to compute. We shall study the proper­
ties of such an algorithm below. 

Consider the situation described in Figure 2.1. In the unit circle C there 
are n points distributed as a sample from a uniform probability distribution 
over C. C is centered at the origin and we denote the points by zv = 
(£v, nv)\ v = 1, 2, . . . , n. Introduce the four stochastic variables 

£mi„ = min(£v), nmin = minfav), 
(2.1) 

£max = max(£v), rçmax = max(rçv). 
V V 

We want, to begin with, to find their joint distribution function, especially 
for large values of n. It is obvious that, as n increases, £min, nmin will tend to 
— 1 and £max, nmax to 1. We therefore normalize them as follows: 

£max = 1 " (u/n«\ u > 0 

Çmin= -l+(v/n% v>0 

where the particular form of the standardization in terms of the exponent 
a will be chosen later on. The variables rçmin, rçmax will be treated in the 
same manner. 

Consider the function G for u and v : 

G(a, b) = P{u^ a,v ^ b) 

(2.3) = P{£max ^ 1 - a/n\ £min ^ - 1 + b/n«} 

= P{-1 + b/n* S Çt S 1 - a/na; i = 1, 2, . . . , n}. 

Let the area of the right shaded segment in Figure 2.1 be denoted by 
A(d), where x2 = 1 — d. Then 

(2.4) A(d) = v — (1 — d)sin v 
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FIGURE 2.1 

where v is half the opening angle of the segment so that 

(2.5) v = arc cos(l — d). 

Then, taking both the shaded segments into account, we get 

(2.6) G(a, b) = [ n - A(a/na) - A(b/na)f/Tln. 

Note, however, that for small values of d (2.5) gives us asymptotically 

(2.7) v ~ sjïd 

and 

(2.8) A(d) - (4/3)^/2 d3/2. 

Hence the expression inside brackets in (2.6), including the IT factor, can 
be written asymptotically as 

(2.9) 1 - (4^2/2TIn3a/2)(a3/2 + fc3/2). 
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Now it is obvious from the form of (2.9) that a = 2/3 will be the right 
choice in order to get a nondegenerate limit result. We get then 

(2.10) lim G(a, b) = exp - -^=-(a3/2 + b3/2). 
n->oo 311 

Hence the stochastic variables u and v will be asymptotically independent 
with the distribution function of Weibull type 

(2.11) H(x) = 1 - exp - (4^/2/3II)x3/2, x > 0, 

and the frequency function 

(2.12) h(x) = ( 4 / n ^ K / x e x p - (4N/2/3n)x3/2, x > 0. 

Now introduce the empirical first diameter 

(2-13) Dt = £max - £min, 

whose probability distribution is obviously translation-invariant, and the 
stochastic variable 

(2.14) kx = (2 - D^rc2'3 = w + Ü. 

It follows that k has asymptotically the frequency function h * h = k with 
a corresponding distribution function k — H * ff, so that the resulting 
distribution is given by 

x) = Pff(x -(2.15) K(x) = tf(x - y)fc(y) dy. 

The above was done for the first empirical diameter D1 in the x-direc-
tion. We can do the same thing for the second one D2 in the y-direction 
and it is not difficult to see that they are asymptotically independent. We 
can generalize this immediately to m diameters with given, distinct 
directions $u (j)2, . . . , <j)m. It then follows that, for fixed m, 

(2.17) lim JP<maxD, ^ 2 - kn~2/3\ = lim P< min A, ̂  k\ = 1 - Km(A). 
n - ^ o o / i I n -* oo I i 1 

We now proceed to estimating the unknown radius R of a circle when 
we have observed the m empirical diameters Dx, D2,. . . , An- The Df have 
the same asymptotic distribution as before except for the change of scale 
in the proportion 1 :R and we can appeal to (2.15) in order to get an 
estimator R* which is asymptotically median-unbiased. 

Hence we have proved the following 

THEOREM 2.1. The m-diameter estimator 
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(2.18) R* = max DJ(2 - Xn~2li) 
i 

is asymptotically median-unbiased when X is chosen to satisfy the equation 

(2.19) K(X) = 2~m, 

and with the confidence interval 

max/V(2 - X^"2'3) S R ^ max DJ{2 - À2n~2/3) 
i i 

with the confidence level 

Km(A2) - X^/li) . 

A word of caution is needed on the interpretation and application of this 
theorem. It is tempting to make m large: if we use a many-diameter 
estimator of R it is likely to be more efficient. This is indeed so, but one 
should note that in the derivation of the asymptotic result we have used 
the fact that for large samples it is unlikely that the segments involved 
overlap. For any value of m overlap can be ruled out with large proba­
bility as n -» oo. If we make m large at the same time the statement, and 
hence the result in (2.18) and (2.20), will no longer be true. For this reason 
m should be chosen rather small, say 4 or 6 if n is of the order of magnitude 
50-100. 

We now turn to the second part of identifying the image 7 and try to 
estimate 

(2.21) 0trans = (x0, y0) 

by estimators x$, y J based on m diameters with a set <D of m directions </>. 
Denote by ££ax, £j i n the minimum and maximum respectively measured 

along the direction (/>. With the same notation as before we have 

(2 22) £L* = *o cos (j) + j ; 0 sin 0 + JR - R(u/n% 

iL = *o cos $ + y0 sin <j> - R + R{v/m% 

and we shall use, for the present purpose, their average 

(2.23) e = &tL> + & J = x0 cos 0 + y0 sin </> + R{w/rf) 

where w = v — u. For any set O we know from the last section that the m 
quantities 

(2.24) ( 1 / W - *o cos 4> - y0 sin </>] 

are asymptotically independent, each with the distribution function 

(2.25) G = H * H~ 

where H~ denotes the distribution function of — u. Note that G is the 
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symmetrization oîH so that G — \ is an odd function. The mean of w is of 
course zero and its variance is 2a2. 

To identify x0 (and similarly y0) we shall use a linear combination of 
£**s: 

(2.26) x§ = X c£+ 

where the coefficients c^ are chosen to make x% a BLUE. Unbiasedness 
demands that 

(2.27) £ c ^ c o s 0 = l, £ c 0 s i n 0 = O 

while the large sample variance is given by 

(2.28) (n«/2R2a2)V<ir(x*) = I c2. 

Let us assume a regular arrangement of the m directions, 

n n (m - 1)FL 
m' m ' ' ' " ' m 

Remembering that a = 2/3, we get 

(2.29) 0) = 40, 

Cj = ( 2 / m ) c o s ^ n / m ) ' 7 - 0, 1, . . . , m - 1, 
Var(x*) - SR2a2/mn4/\ 

which can be used to get confidence intervals for x0 and y0. 
The expression in (2.30) needs some additional remarks. Replacing 

l& by the features R\, x*, y% has been done using boundary features for 
I2: quantities derived from ££ax, ^ i n and combining them linearly. We 
have used quasi-linear feature extraction. 

If instead we had used the linear features 3c, y, i.e. the coordinates of the 
centroid of /^ , we would have gotten a variance of the order of magnitude 
n~ *. We have gained in recognition accuracy by a factor of the order n1/3 by 
preferring the quasi-linear boundary features. 

The case when y consists only of circles is of course quite simple. Let 
us therefore turn to the situation when we generate the images by 
J = gV, where the prototype F is a closed, convex figure with continuous 
curvature. If we had allowed corners the following analysis would have to 
be modified, but we shall postpone a discussion of how this could be done 
here. Let us start by only having G = scale changes, so that we have to 
identify a scale factor, say JR. Let us put the area of F equal to A. 

Consider Figure 2.2 where Tx and T2 are the two support lines in a 
direction 4>. Let us denote by R^cj)) and R2((t>) the radii of curvature at the 
points of contact Px and P2- Introduce a coordinate axis Ç perpendicular 
tO(j). 
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Pi 

T , 

FIGURE 2.2 

For the deformed image I9 we introduce £*in, ££ax analogous to the 
quantities used in the case of the circle (see Figure 2.1). We then get 

(2.31) 
ZLn = R(4 + *i(0)"/»a) 

where the factors Oi(<j)) measure the size of a small segment at the points of 
contact P: so that 

«M>) 
T\R\{4>) TlRfW) 

area of V 
(2.32) 

The quantity 

(2-33) R% = (£„ - &J -=- (xî - xf) 

can then be written as 

(2.34) Kff, = K + 
wa(xf - xf) 

Combining m such values into a new feature 

(2.35) R* = X c^R*, 

we choose the coefficients c± so that 

(2.36) 

where /i is the expected value of the H-distribution, and 
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„2 g l W + Gl(4>) _ v ,2/ (2.36a) £ < j 1
( ; 7 _ x t

2
) r = Z ^ v = m i n 

defining av and jSv in the obvious manner. This gives us immediately 

(2.37) c ^ 1 ^ ^ c(xJpvl ~~ l 

with the resulting variance 

(2.38a) Var(R*) 
R2a2 1 

n2* E«v
2/iSv 

A problem that does not arise for the circle but for the present prototype 
V is when G = rotation group. Say that the scale and location of I have 
already been determined and use the notation introduced in connection 
with Figure 2.2. We shall use the notation 9 for the unknown angle of 
rotation. Then the set of 2m quantities 

n m , c0 *l(4> + 9) - & „ , & , ~ X2(0 + fl) 

are all asymptotically independent and distributed according to the 
ff-distribution with mean \x. It is therefore natural to estimate 0 by solving 
the least-squares problem 

(2.39) mm £ (of - fx)2. 

This is a nonlinear least-squares problem but for the asymptotic solution 
it is enough to linearize the functions of 9 appearing in the of. We have 
assumed here that the 2m values of x ^ + 9) determine 9 uniquely. 

We can now allow the image algebra &" to be more extensive. Let the 
prototype again be the unit disk and G = {translations, scale changes}. 
If F has as a binary operation unions of sets U we can get images like 
the one in Figure 2.3a. If only two prototypes are allowed in any image 
we have a six-dimensional image algebra: four coordinates for the centers 
and two for the radii. An ad hoc identification procedure based on the 
centroid and moments of inertia would not suffice. 

We can, however, base the identification on boundary statistics by 
extending the approach that we have used. The methodology is applicable 
if we remember to take account of the special case that arises when we 
approach I from the direction of one of the two common tangents to both 
circles. If we do we get two contributions to the distribution of ££ax, ££in 

rather than one: we have two points where the tangent touches I. 
If instead we allow as binary operation intersection of sets and as 
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i=(glU)n~(g2U) 

FIGURE 2.3 

unary operation complementation we can get crescent-shaped images, as 
the one in Figure 2.3b. Here our methodology must be extended to be 
able to handle images with corners. 

outside 

FIGURE 2.4 

To do this consider the corner in Figure 2.4 with an opening angle 2v 
and we approach I2 cz I from the direction 0, in this case more con­
veniently expressed through the angle xj/ in the figure. Denoting the 
total area of I by A = m(J), we get for the probability that a point drawn at 
random from ƒ will fall to the left of 0 (see Figure 2.4), which is asymptoti­
cally correct for small x assuming continuous curvature away from the 
corner, 

(2.40) (x2/2A)[sin(v + </>)+ sin(i? - 0)] = (x2/,42)sin v C os (j). 

It is now clear how to normalize x. Let us put 

(2.41) x = uL/n, 
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which leads to the asymptotic distribution function for u 

(2.42) lim P(n S t) = 1 - expf - —5 cos </> cos v ), t > 0. 

This half-Gaussian distribution can be used for the treatment of 
images with corners instead of the //-distribution, which is valid for 
smooth boundaries. 

As we go ahead to more extensive image algebras formed in the same 
manner with higher dim(^) we can, in principle, apply the same method. 
For high dimensionality they do not seem as natural, however, and one 
would prefer more nonparametric methods. As a matter of fact, already 
the six-dimensional crescents may present such a case. We shall describe 
some alternative identification procedures. 

Start from 3~ = {crescent} ; let us form the convex hull of I3 (see Figure 
2.5), and denote the lengths of the sides by lt and their orientations by (xt. 

FIGURE 2.5 

Consider the end points P' and P" of the side with greatest lt and introduce 
the circles C(P\ P"; p) of radius p passing through P' and P"'. 

Form an image of the form 

(2.43) I * = C(F, P"; Pl) n - C(P\ P", p2) 

and choose p± and p2 so that m(/*) = min with the constraint ƒ* c I. 
One can prove that this is a consistent estimator of/. 

Another boundary statistic that could be exploited is the set of quantities 

(2.44) pf = 2(a i+1 - a |)/(/ t + 1 + Id. 

They estimate the curvature and could be used both to estimate the 
inverses 1/Pi, 1/P2

 a n d to find the location of the centers of the two circles. 
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3. Breakpoints in the boundary. The function of boundary features is 
to catch some typical property of the true boundary dl mirrored through 
3 into the "boundary" of the deformed image Is. Such properties can be 
the value of the radius of curvature, more or less sudden changes in the 
curvature, or corners. We shall study the recognition of one such property 
in this section. 

Consider an image 

(3.1) / = Half-strip vj Wedge 

generated from a half-strip and an infinite wedge, resulting in the shape in 
Figure 3.1, where the unknown parameter u expresses the location of the 
breakpoint in dl where the wedge meets the half-strip. 

/ 
/ 

/ Wedge 

Half-strip 

FIGURE 3.1 

We shall investigate two deformation mechanisms, one version of 3\ 
and also 32. 

First, let the infinite sequence of independent stochastic variables x1? 

x2 , x3 , . . . be distributed as R(0, at). We shall assume that 

(3.2) a, = 1 + iUnWIn) 

where (j) is a given nondecreasing and piecewise continuous function. In 
the special case belonging to (3.1) the at are constant and equal to one up 
to some large subscript i0 = [an], and we want to find out where the 
breakpoint /0 is, having observed the xx . Our procedure will be based on 
the first observation xk that passes through a level / > 1 with 

(3.3) 1=1+ (À/n), I > 0 

so that 

(3.4) Xx ^ /, x2 ^ /, . . . , xfc_! ^ /, xk > l. 

The probability pk of (3.4) is 

(3.5) Pk = f i P(*i S 0 ' P(xk > I) 
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FIGURE 3.2 

and the distribution for the normalized subscript x = k/n is 

(3.6) FH(x) = P(k ^ nx) = Pl + p2 + • • • + p[nx] = 1 - Q[nx] 

where 

(3.7) Qk = f ] P(xt g I). 
1 

Using the rectangular distribution we notice that the factors in (3.7) 
are 1 for /'s satisfying 

(3.8) (j)(i/n) S l. 

If we denote by x0 the smallest root of (/>(x) = À we get 

(3-9) 6 ^ = n * * , * / ) = n t +(tnUU/nV 

Hence for large values of n 

and we get 

THEOREM 3.1. With (3.2), (3.3), the limiting distribution F of the time 
k when the observations pass through the level I is given by 

(3.11) F{x) = lim P{k ^ nx} = 1 - exp [A - # x ) ] dx), x ^ x0. Œ 
To apply this to the case in Figure 3.2 we just put 

(j)(x) = 0, 0 ^ x S a, 

= /?(x — a), a :g x, 
(3.12) 
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where p is the slope of the linear trend in the figure. We then get 

(3.13) x0 = a+A/0 

and we have 

COROLLARY 3.1. For at as given in Figure 3.2 we get the limit distribu­
tion 

(3.14) F(x) = 1 - expf- ~ (x - a)2 + (x - a - - j + — j , x > x0 . 

To get the g-quantile for the error y = x — a we have to put 

(3.15) q = F(yq + a) 

so that 

(3.16) yq = (X/fi) + VC(2/]8)log(l - 9) 

so that the median of x is 

(3.17) Median(x) = a + y5 = a + (A/jS) + N/(2/i8)log"2 

and we should use the corrected diameter 

(3.18) x - A/j8 - J(2IP)\o%2. 

Let us instead look for the maximum likelihood estimator assuming 
4>(x) = 1 for 0 S x S oc and </>(x) = 1 + d for x ^ a with d > À. Then 
we get from Theorem 3.1 the following limit result. 

COROLLARY 3.2. For a sudden change of the at as described above the 
limiting distribution is given by 

(3.19) F(x) = 1 - exp[ - (d - X)(x - a)], x > a. 

Let us instead look for the maximum likelihood estimator assuming 
that we have access to JV = [cri], c > a, observations. We still let a 
represent the true (but unknown) value of the parameter in (3.12) and 
consider the likelihood function in a', a' > a, 

[en] i 

<3-20> w-,.n,. + w.)W.-rf) 
if X; g 1 + (p/n)(i/n — a') for [a'n] ^ i ^ [en], otherwise L(a') = 0. 
Hence the maximum likelihood estimation is the largest value of a' such 
that 

(3.21) xt S 1 + iP/riii/n - a'), [a'n] g i g [en]. 

Therefore the event a* ^ a' is the same as the event in 1, so that the 
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distribution function of a* is 

GJLt) = P{a* S t} 

(3 22) = i _ n — n 1 + (P/*M* - *) 

aJiLt 1 + (P/n)(i/n - a) t < ^ e 1 + (fi/nMn - a) 

so that 
G{t) = lim Gn(t) = 1 - exp 

~(t - a)2 (3.23) 
= 1 — exp — j8 

Hence we have the following result. 

pl\ {x — a)dx + (t — ccjdx > 

+ (c - t)(t - a) 

THEOREM 3.2. The maximum likelihood estimator has the limiting 
distribution 

G(t) = 1 - exp - pUt - a)2/2 + (c - #* - a)], a ^ ^ , 
(3.24) 

7 = 1, £ > c. 

We can now extend the results in several directions. First, assume that 
xt is not K(0, at) but is the largest of a sample of 5 observations from 
R(0, at). The only thing that changes in our derivations is that the ratios 
in the second product of (3.9) should be raised to the sth power. Instead of 
(3.11) we get the limiting distribution 

(3.25) 1 — expl s [A —</>(x)] dx\9 x > x0 

and similar changes in the other results above. 
Now let us study the situation depicted in Figure 3.3, where the image is 

defined by the boundaries x = 0 and x = 1 and 

(3.26) (/^(x) - OLX S y S <t>i{x) + a2, 0 <; x < 1, 

where the parameters VLX and a2 are nonnegative and <j)x{x) <ji <MX) f° r 

all x e (0,1). J P is generated as before by a Poisson process with intensity 
/i, resulting in the n points with coordinates (x1, yt)9 (x2, y2)9 • . . , (xw, >;„). 

This situation corresponds to a pure image generated as 

(3.27) I = (glSl) n (#2s2) 

where the signs sl9 s2 are defined by 

*i = { ( x , j ) | 0 ^ x ^ l , y ^ 2 ( x ) } 

s2 = { ( x , y ) | 0 g x £ l j è W x ) } 
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FIGURE 3.3 

and the g's are translations in the y-direction. 
As before, the ML estimates af, af are given by minimizing the area 

A(otu a2) of/ with the constraint that all (xv, yv) e I. We have 

(3.29) A{VLU a2) = ,4(0, 0) + ax + a2 

so that to minimize A means minimizing ocl -f a2 and can be done by 
minimizing a t and a2 separately because of the form of the constraint. 

(3.30) otf = max [(M**) ~ )>;]> a* = m . a x [ t t ~ <M*i)]-
i 1 

To find the joint distribution function F for (af, af) we note that, for 
s ^ al9t ^ a2, 

F(s, t) = P(a* ^ s, a? ^ t) 

= P((M*i) - ytS s and yf - <£2(xf) g £ for all /) 

= P((/)1(xI) — s and j / f ^ (t>2i
xè + * f° r a ^ 0 

= exp(- iu[^(a1 , a2) - A(s, *)]) 

(3.31) 

so that 

(3.32) F(s, t) = exp( — ii(oLx — s) — jLL(a2 — s)). 

THEOREM 3.3. The maximum likelihood estimators a*, a* for the 
image of form (3.34) viewed after Poisson deformation mechanism has been 
applied are given by (3.36) and are stochastically independent and at — a* 
is exponentially distributed with mean 1/̂ u, i = 1,2. 
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4. Behavior of the leeway set. With the same notation as before, let I 
be an image of the form gl0 for a given and fixed prototype I0 which we 
shall take as a convex set with a boundary which has continuous and 
positive curvature. Let G be the whole or a subgroup of the Euclidean 
group on R2. The deformation mechanism 2f results in a sample (x l9 yx), 
(x2> yi)> • • • j (xn> yn) of points from I. We shall also assume that the group 
element g associated with the pure image is uniquely determined so that 
01*0 = 02*o implies gx = g2. 

The only possible values of g are the ones satisfying 

(4.1) I® c I = gl0 

or 

(4.2) g'HxytyJelo forv = l , 2 , . . . , n . 

Let us denote the subset of G given by (4.1) by yn = y{IB). Any reasonable 
algorithm for recognizing g must give a result in y and deciding between 
all such admissible algorithms will be based on some additional criterion 
such as maximum likelihood or mean square error with some distance 
onG. 

The size of yn determines how much leeway we have in picking a value 
of g and this is what we shall call the set yn. Notice that yn are stochastic 
sets which form a nonincreasing sequence in n. Hence as n tends to 
infinity the yn tend to a limiting set lim^^^ yn. 

LEMMA 4.1. We have, with probability one, l i m ^ ^ yn = #true so that 
in the limit the leeway contains only the true value gtrue. 

PROOF. Let Is stand for the convex hull of yn. Then Ï® ~> ƒ = 
0true*o> with probability one. Then (4.2) is equivalent to the set of g's such 
that 

(43) {0 | AT 1 ƒ•<=ƒ<>} = y„. 

Hence 

(4.4) lim yn = {g \ g~lgirxiQI0 = /<>} 

which implies g~1gtrue = e = unit element of G and g = gtrue is the only 
element of the limiting set. 

REMARK. Lemma 4.1 means that, without appealing to any additional 
optimality criterion, any admissible identification algorithm is consistent 
in the statistical sense. 

Let us look at two special cases. First let G be just the group of transla­
tions of the plane. Then, writing g = (a, b), #true = (a, ƒ?), 
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(4.5) yn = {(a, b) \ (xv - a,yv - b)e I0;v = 1,2, ... , n}. 

This means we can write the leeway set as 

(4.6) yn = f] Sv 
v = l 

where the 5v's are stochastically independent random sets and can be 
written, with obvious notation, 

(4.7) Sv = {(a,b)\(a,b)e(xv,yv)-I0}. 

It is clear that yn is also convex. 
On the other hand, if G is the linear group (for simplicity we shall only 

deal with the proper linear group where the determinant is positive), so 
that g~l can be represented as a 2 x 2 nonsingular matrix, 

(4.8) AT1 = { 
(.021 022 

then the leeway set is still of the form (4.6) but now with 

(4.9) Sv = {g | (glxxy + g12yv, g21xv + g22yv) e I0} 

(it is convenient to work with g~ * rather than with g). If we represent our 
convex set I0 in terms of its supporting half-planes 

(4.io) i0 = n «*> y) I H £ lix + %y ^ h) 
pe<D 

then the leeway set can be expressed as 

? " = ^ ' G* ~ ^ l l X v + Ö f l 2 j 7 v ) + ^ 2 1 ^ + 022>'v) ^ K\ 
( a l l<MO;al lv = 1,2, . . . , n } . 

Hence yn is again convex. 

LEMMA 4.2. In the case (4.8) ML estimation of g amounts to solving a 
quadratic programming problem. 

PROOF. The likelihood function is, for all (xv, yv) in the pure image 
(otherwise it vanishes), 

(4.12) L = A~n 

where A is the area of/: 

(4.13) A = m(I) = detfo) • m(/0) = detfo) • A0. 

In other words, we have to minimize the quadratic function 
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(4.14) d e % ) = 0U022 ~ 012021-

We shall now study in more detail how y„ tends toward the empty set 
and we shall do it under the assumptions given above and for the 
additive group of translations. 

THEOREM 4.1. The expected area of the leeway set yn satisfies 

(4.15) l i m n 2 E [ m ( y M ) ] = 2 ^ r ^ 

where A0 is the area of I0 and D^ the diameter associated with support lines 
in the direction (j). 

PROOF. Let ƒ be the indicator function of J0. Then the indicator 
function of yn can be written, using (4.6) and (4.7), 

(4.16) 

so that 

(4.17) m(y„) 

<Kx,y) = n / I X ~x,yy- y] 

"I </>(x, y) dx dy = f l /K*v - ^ J v - )')] dx dy. 
v = l 

But the points (xv, yv) are stochastically independent with the frequency 
function 1/A0 • ƒ(x, y) so that 

(4.18) 

Em(y„) = \\< — \\f[u - x, v - y]f(u, v) I dx dy 

y)dxdy. 

It is clear, since K(x, y) is 1/A0 times the area of the intersection of I0 with 
Jo + (*> y)> t r iat this kernel is bounded by one, which value is attained for 
x = y = 0. 

If the vector (x, y) is small and points in the direction (j> we have 

(4.19) K(x, y) = 1 - V x 2 + y2/A0 DJ\ + o(l)) 

where D^ is the diameter associated with support lines in the direction 0. 
Hence 

(4.20) lim n2 Em(yn) = exp' 
n->oo 

or, in polar coordinates, 

If --^D^s/x' + y2 dxdy 
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2n 
2 lim n2 Em(y„) = 

n-* oo 

(4.21) 

exp 
p=0 

D*P 
A0 

p dp d(j) 

-Cf 2 

This tells us at what rate we can expect the area of the leeway set to 
decrease. We can also find out how the linear dimensions decrease, and 
we state the result without proof. 

THEOREM 4.2. The distribution function Fn of the linear dimension I 
in the direction (j) 

(4.22) / = max{s | (a + s cos 0, /? + s sin </>) e yn} 

satisfies the limit relation 

(4.23) lim Fn(nt) = 1 - exp - ^ . 

REMARK. The theorem says that the standardized linear extent in 
the ^-direction, nl^ has asymptotically an exponential distribution with 
mean = AJD^. But this implies that we cannot expect statistical stability 
for nl^ even though n is quite large. It would be of interest to see if the 
correlation coefficient for 1$ and l^ converges and if so, if the limit is 
different from zero, for 0 ^ \//9 but this has not yet been done. 

Now let G be the set of rotations around some point inside I0 whose 
boundary, represented in polar coordinates, is 

(4.24) p = p((/>), 0 g $ < 2K, 

so that the leeway set yn is expressed in terms of the angle </> of rotation by 

(4.25) yn = {4> | R+(xv, yv) e J0; v = 1, 2, . . . , n} 

and R* stands for the rotation operator. Let ƒ be the indicator function 
of/0: 

(4.26) KJL4>) = (lMo)m(/0 n R-%); 

we have, however, 

(4.27) m(I0 n R~*I0) = l- fmin 2 [ /# ) , P(<A + 0 ] # • 

We shall assume 

p e C 2 , 
(4.28) p\\l/) S 0, in intervals (ak, bk), 

p\\jj) > 0, for other 0's, 
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so that the contribution to the integral in (4.30) from (ak, bk) is, for small 
4>>0, 

(4.29) \ h > 2 W + 24>p{Wm ài> + <#). 

The other intervals give just the contribution 

(4.30) i L 2 W # + o(02). 
j 

Hence, for </> > 0, 

(4.31) m(I0 n R~*I0) = A0 + % £ |>2(fek) - p2(afc)] 

and, for (f) < 0, a similar expression but with the sum evaluated over the 
remaining intervals. Let us denote these two sums by o~ and a+ respec­
tively. Combining this with (4.29), (4.30) and (4.31) we get the same 
method as for Theorem 4.1. 

THEOREM 4.3. For the leeway set yn expressed in the angle of rotation 
we get, when G is the rotation group, 

(4.32) lim n £[m(y„)] = 2A0(^ - ~). 

It may be possible to treat the case when G = scale changes (not 
necessarily the same in the x and y directions) by the same method. 

5. General recognition algorithms. So far we have employed algorithms 
based on boundary features for recognition. Is it possible to construct 
more general algorithms that do not depend upon the algebraic structure 
of the image algebra &"\ To judge the performance of such an algorithm 
we shall require, as a minimum, that it is consistent in the sense that the 
expected error tends to zero with n, A, Xx or A2 respectively for the ®'s 
described in §1. By error we mean the Lebesgue measure of the symmetric 
difference between the pure and the recognized images : 

(5.1) error = e(I, I*) = m(I A/*) = m[(7 n - / * ) u (ƒ* n ~ / ) ] . 

It is obvious that Is itself cannot be used as 7* since e(I, I9) = m(I) and 
does not tend to zero. The reason is, of course, that I® is too sparse; we 
need more "solid" sets as recognizers of I. 

Consider instead 

(5-2) /* = Ü C„(zv), 
V = l 
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where Cp(z) stands for the disk with radius p centered at the point z, and 

(5.3) I9 = {zx,z2, . . . , z „ } . 

If we let p tend to zero at an appropriate rate this choice of recognition 
algorithm is consistent. 

THEOREM 5.1. The set /* defined in (5.2) defines a consistent recogni­
tion algorithm for any I e F (as defined in §1) if 9 = @l and 

(5.4) p - * 0 , np2-> oo. 

PROOF. Writing /*(z), I(z) for the indicator functions of / and J* 
respectively, the error can be written as 

(5.5) Ee(L /*) = [1 - EI*(z)~\rn(dz) + 
zel 

EI*(z)m{dz). 
z$I 

Introduce the sets IP
n, I°p

ut (see Figure 5.1) as 

FIGURE 5.1 

Pp
n = {z | z e ƒ and dist(z, 57) ^ /?}, 

(5*6) I0* ~ {z\z$I and dist(z, dl) è p}. 

For ze/J1 , we have 

(5.7) EI*(z) = 1 - (1 - np2/m(I))n - 1 

because of (5.4). Similarly, for z G 7°ut we have 

(5.8) EI*(z) = 0. 

Combined with m((~/*ut) n (-/J?)) -> 0 which also follows from (5.4), 
the equations (5.7), (5.8) prove the assertion. 
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If S> = <2>3 another approach is needed. Say that 

(5.9) kx = iixk, X2 = \i2l, 

with fix > fi2, n -» oo, and introduce 

(5.10) / * - {z | Np(z) è t) 

where Np(z) is the number of zi falling inside Cp(z). We then have con­
sistency : 

THEOREM 5.2. The set (5.10) leads to consistent recognition for any 
lef,® = @3, if 

t = ((A*i + JN2)/2) np2À, p - • 0, p2X - • + oo. (5.11) 

The proof parallels the earlier one. 
These two theorems guarantee that ƒ* is close to I in measure if n or X is 

large. It should be kept in mind, though, that the speed of convergence of 
these recognition algorithms may be low. That this is indeed so will be 
seen at the end of this section. There is nothing surprising in this: the 
algorithms are quite general and do not assume any particular algebraic 
structure. Low efficiency is the price we have to pay for general validity. 

This raises the question whether one could not build the recognition 
algorithm directly on the image algebra and the knowledge of 2. The 
following three examples clarify this approach. 

The first one is very simple: / is just g0C, where g0 is an unknown trans­
lation and C is a circle of given radius JR (see Figure 5.2). The inner set in 

FIGURE 5.2 

this figure bounded by circular arcs with radius # will be denoted If and 
has been constructed as the intersection of all gC containing the deformed 
image I® : 
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(5.12) ƒ ' = H 9C-

It is clear that If a I and, at least intuitively, that the expected error of Is 

tends to zero as n increases. Note that If is the feature closure of I2 (see 
Grenander (1968)). 

The next example is J = (gfiS^ n (~g2S2) from Figure Lie. Starting 
from I® we now form the intersection of all g1S1 and of ~g2S2 containing 
I3. We get the inner set of Figure 5.3 and it is intuitively clear that this If 

is also consistent. Note that it is the feature closure of I® using the features 
gS1 and ~gS2. 

FIGURE 5.3 

In the third example we use the disjunctive image of Figure Lid and 
form If as the intersection of all sets with the syntax (gxC) u (g2C). The 
resulting set will be bounded by circular arcs and it is clear again that 
consistency holds. If is now a multiple feature closure of I9. 

To treat a more general image algebra we shall need a weak additional 
condition. If z', z" are two interior points close to each other and to the 
boundary of I we shall denote by a(z', z") the inward-oriented area of I 
excluded by intersection in (5.15) and bounded by the chord from z' to 
z". We shall assume that 

(5.13) (A): a(z',z") = 0(\\z' - z"||2). 

Condition (A) is satisfied if the curvature is piecewise continuous and 
bounded and if the (finite number of) corners have positive opening angle. 

THEOREM 5.3. Consider the pure image 

(5.14) I = B(Sl,s2, ...,sk) 
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where B is a given Boolean function. Let 

(5.15) I'=C\B(sai,sai,...,sJ 

where the intersection is taken over all (sai, sa2, . . . , sXk) such that 
B(sai, sa , . . . , sak) contains I® and s^, sa2, . . . , sak are generated from the 
given set of prototypes via similarity transformations. Assuming that 
Condition (A) holds, If represents a consistent recognition algorithm. 

PROOF. We have P a I since one of the factors of the intersection 
in (5.15) is I itself. Now consider #p = I — ƒy1 for small values of p. Note 
that dl consists of a finite number of analytic arcs, say of total length L. 
As n increases $ will be more and more densely filled with points 
zve I®. Let us order them with respect to curvilinear coordinates follow­
ing each other in the direction of the arcs of dl. Consider two such 
points z' and z" close to each other. The area of/ will not be completely 
covered by If. Neglecting the set fp, which tends to zero asymptotically, 
If may miss some areas of ƒ due to inward indentations of If. The contribu­
tion due to the area associated with (z', z") is bounded by a(z\ z") as in 
(5.17). The entire contribution is then bounded by 

(5.20) £ a(zv, 2V+1) = OCX ||zv - zv+1 | |2) 

summed over the v's belonging to zxe fp. But the expected value of the 
right-hand side of (5.20) tends to zero as n tends to infinity, and this 
completes the proof. 

It would be interesting to find out how much better feature closure works 
as recognition algorithm compared to the general algorithm of Theorem 
5.1. In other words, is it true that restoration algorithms that preserve 
structure are superior to general ones? This will be studied in a forthcom­
ing paper (Grenander and Lavin (1973)). 
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