MEASURES WHOSE TRANSFORMS VANISH AT INFINITY

BY LOUIS PIGNO AND SADAHIRO SAEKI Communicated by Bertram Yood, January 8, 1973

Let G be an LCA group with dual Γ , M(G) the usual convolution algebra of finite Borel measures on G and \wedge the Fourier-Stieltjes transformation. By $M_0(G)$ we mean the ideal of measures $\mu \in M(G)$ such that $\hat{\mu}$ vanishes at ∞ . The purpose of this note is to announce the following results.

THEOREM. Let G be a nondiscrete LCA group with Haar measure m_G . Let λ be a nonzero measure in $M_0^+(G)$ and D a σ -compact subset of G with $m_G(D) = 0$. Then there exists a nonzero measure σ in $M_0^+(\text{supp }\lambda)$ such that

(i) supp σ is compact and has λ -measure zero,

(ii) $m_G[D + G_p(\operatorname{supp} \sigma)] = 0.$

Here $G_p(\operatorname{supp} \sigma)$ denotes the subgroup of G which is algebraically generated by $\operatorname{supp} \sigma$.

COROLLARY 1 (VAROPOULOS [2]). Every nondiscrete G contains a compact perfect set E such that $M_0^+(E) \neq \{0\}$ and $m_G[G_p(E)] = 0$.

Let $M_s(G)$ denote the set of measures singular with respect to Haar measure on G.

COROLLARY 2. Let B be a separable subset of $M_s(G)\setminus\{0\}$ such that $\hat{\mu}|\hat{F} \neq 0$ for all $\mu \in B$ and some σ -compact subset \hat{F} of Γ . Then there exists a measure $\sigma \in M_s^+(G)$ such that

$$\bigcup_{n=1}^{\infty} (B * \sigma^n) \subset M_s(G) \setminus \{0\}.$$

COROLLARY 3. Suppose $\mu \in M(G)$ has the property that, $\forall \sigma \in M_0^+(G)$, $\exists n = n_{\sigma} \in N$ (the natural numbers) such that $\mu * \sigma^n \in L^1(G)$. Then $\mu \in L^1(G)$. In particular, we have $\mu * M_0(G) \subset L^1(G) \Rightarrow \mu \in L^1(G)$.

As an application of Corollary 3 we give the solution to a question implicit in Meyer [1, p. 94]. Let E be a subset of Γ and define

$$M_{\widehat{E}}(G) = \{ \mu \in M(G) : \operatorname{supp} \widehat{\mu} \subset E \}.$$

We say that \hat{E} is a Riesz set of type 0 if

(a)
$$M_0(\boldsymbol{G})^{\wedge}|_{\hat{\boldsymbol{E}}} = L^1(\boldsymbol{G})^{\wedge}|_{\hat{\boldsymbol{E}}}$$

Note that every Sidon set (or Helson set) has property (a).

AMS (MOS) subject classifications (1970). Primary 43A25.

Copyright © American Mathematical Society 1973

COROLLARY 4. Let $n = (n_1, n_2, ..., n_p) \in N^p$, $p \in N$, and $\hat{R} \subset \Gamma$ satisfy

$$\mu_j \in M_{\hat{R}}(\boldsymbol{G}) \cap M_0(\boldsymbol{G}) \quad for \, j = 1, 2, \dots, p \text{ imply}$$

(b) $\mu_1^{n_1} * \mu_2^{n_2} * \cdots * \mu_n^{n_p} \in L^1(G).$

Then $\hat{F} = \hat{R} \cup \hat{E}$ has the following property (c) for every Riesz set \hat{E} of type 0:

(c)
$$\mu_{j} \in M_{\widehat{F}}(G) \quad for \ j = 1, 2, \dots, p \ imply$$
$$\mu_{1}^{n_{1}} * \mu_{2}^{n_{2}} * \dots * \mu_{n}^{n_{p}} \in L^{1}(G).$$

In particular we have for any compact abelian G the result: The union of a Riesz (or small) set and a Sidon set is a Riesz set.

Detailed proofs of the above will appear elsewhere.

REFERENCES

Y. Meyer, Spectres des mesures et mesures absolument continues, Studia Math. 30 (1968), 87-99. MR 37 # 3281.
N. Th. Varopoulos, Sets of multiplicity in locally compact abelian groups, Ann. Inst. Fourier (Grenoble) 16 (1966), fasc. 2, 123-158. MR 35 # 3379.

DEPARTMENT OF MATHEMATICS, KANSAS STATE UNIVERSITY, MANHATTAN, KANSAS 66506