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In this announcement we will state some results on the torsion of the 
differentials in the Lyndon-Hochschild-Serre (L-H-S) spectral sequence in 
the homology theory of groups and give some applications. Detailed 
proofs and further applications will appear elsewhere. 

1. Main result. Let 

(1.1) N>->G-»Q 

be a group extension with N abelian, characterized by a E H2(Q;N\ and 
let A be a G-module. Then there is a L-H-S spectral sequence (see [5]) 
{E?q(Ald«r}, associated with (1.1), with E^q(A) = Hm{Q;Hq(N;A))9 con­
verging to the homology of G with coefficients in A. 

To the authors' knowledge, only the differential d\ has been studied 
([1], [2], [3], [4]); nothing seems to be known about the higher differentials 
da„ r ^ 3. 

To state our main result we introduce certain numerical functions 
K, A, a. For any natural number h and any prime p, we write pe\\h to mean 
that pe\h but pe+ lJfh. Let q, ƒ, n be natural numbers and define a(p\ b(p) by 

Paip)\\L b(p) = mm(q9a(p)+l). 

Let n admit the prime-power factorization n = pi1 ps
2
2 • • • p?, and define 

the functions K, A, a by 

*(/,")= ri/>f+a(p,), 
i=l 

%q,f,n)= fi PHP)> 
(p-i)\f;p*puP2»..,pi 

(1.2) a(q, ƒ, n) = 2KX if ƒ is even and 2\n or if ƒ is even, 

n is odd and a(2) + 2 ^ q, 

— KX otherwise. 

Our main result is 

THEOREM 1.1. Let (1.1) be characterized by <xeH2(Q;N) of order n. 
Then, provided that either 
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(a) q + r ^ 3 and A is a Q-module which is torsion-free as abelian group, 
or 

(b) N is torsion-free and A is an arbitrary Q-module, we have 

o(q, r - 1, n)d«r = 0, r ^ 2, 

where 

d*r\E?\A) - E?-r>q+r-\A). 

We note that condition (a) above covers the portion of the spectral 
sequence giving information on the Schur multiplicator of G. 

SKETCH OF PROOF. Let fk:N -» N denote multiplication by kn + 1. 
Since fk((x) = (kn + l)a = OLEH2(Q\N\ it follows that there is a map 
<j)k : G -* G giving rise to a commutative diagram. 

(1.3) 

N> >t 

r 
JV> • ( 

Ï—»ö 
0k 

î—~ô 

Then (1.3) yields in its turn a commutative square. 

(1.4) 

£H^)—^BT"'' 

A. 

E?% 

A» 
1 d*r 

i+«-i(,4) 

I + ' - l ( ,4) 

Under the hypotheses of the theorem one may identify (fk)*:E?q(A) 
-> E?q{A) with multiplication by (kn + 1)*, so that (1.4) leads to the 
relation 

(1.5) 9(k)d«r = 0, 

where 

(1.6) 6(k) = (kn + \f((kn + If'1-1). 

Since the gcd of the integers Q(k) (1.6) is precisely a(q, r — 1, n\ the theorem 
follows from (1.5). 

As a special case, one may consider the split extension (semidirect 
product) N> • N^\ Q—» Q. Then, under the hypotheses of Theorem 
1.1, we find 

dr = 0 if q =* 0, 

2dr = 0 if r is even and q ^ 1, 
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Mr = 0 if r is odd and 1 ^ q ^ a(2) + 1, 

2Mr = 0 if r is odd and a(2) + 2 ^ q. 

Here A = n(P-1),(,-i)Pb(P)-
REMARKS, (a) À similar analysis of the torsion of d? may be made in 

case N is the direct product of two cyclic groups. 
(b) The estimates for the torsion of (% may be sharpened when the 

extension (1.1) is central. One then obtains, under the hypotheses of 
Theorem 1.1. 

K(r — 1, ri)d* = 0, unless 2||n, r odd, 

2K(V - 1, n)da
r = 0, if 21| n, r odd. 

2. Applications, (i) The Schur multiplicator of a semidirect product (see 
also [4]). 

PROPOSITION 2.1. Let N> • N] Q—» Q be the split extension. Sup-
pose that either 

(a) 2 : N -» N is an automorphism (e.g., N is torsion without 2-torsion), or 
(b) Q is of odd order. 

Then H2(N] Q) = R2 ® H2Q, where there is a short exact sequence 

(2.1) (H2N)Q > > R2 -+> HX(Q;N). 

The sequence (2.1) splits under hypothesis (a) (see [4]). 

(ii) The order of the Schur multiplicator of a finite extension (1.1). We 
again suppose <xeH2(Q;N\ characterizing (1.1), to be of order n. Let 
n be the set of primes dividing 2n and let n' be the complementary set of 
primes. For any natural number h, let n(h) be the 7i-primary factor of h 
and n\h) the ^'-primary factor of h. 

PROPOSITION2.2.(a) n'\H2G\ = n^^QV^H^Q^VnWiNhY 
(b) n\nH2Q\-n\nHx{Q-N)\-mH2N)Q\ ^ n\H2G\ g n\H2QVn\Hx(Q\N)\ 

n\{H2N)Q\, where t = 2n2 ifn is odd or 4|n, and t = An2 if2\\n. 

(iii) The rank of H„G for a finite extension N> • G—» Q. We again 
refer to (1.1), characterized by aeH2(Q;N) of finite order. With no 
further assumption on N we infer 

PROPOSITION2.3. rank HnG = Xm=oranlcHm(Q;Hn-mN). 
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