BOUNDED SOLUTIONS OF WHOLE-LINE DIFFERENTIAL EQUATIONS

BY DAVID LOWELL LOVELADY

Communicated by Fred Brauer, December 18, 1972

Let Y be a finite-dimensional linear space with norm $| \cdot |$, and let $R = (-\infty, \infty)$. Let $\mathscr A$ be the algebra of linear functions from Y to Y with induced norm $\| \cdot \|$, and let A be a locally integrable function from R to $\mathscr A$. W. A. Coppel [2], [3, Theorem 1, p. 131] has determined necessary and sufficient conditions for

(NH)
$$u'(t) = f(t) + A(t)u(t)$$

to have at least one solution u in $\mathcal{L}^{\infty}[R^+, Y]$ (where $R^+ = [0, \infty)$) for each f in $\mathcal{L}^{\infty}[R^+, Y]$. R. Conti [1] has solved the same problem for f in $\mathcal{L}^p[R^+, Y]$, $p \ge 1$, and u in $\mathcal{L}^{\infty}[R^+, Y]$. In this note we indicate how the results of [4] solve both of these problems for equations on R instead of R^+ . Let Φ be the fundamental solution for

(H)
$$v'(t) = A(t)v(t),$$

i.e., Φ is that locally absolutely continuous function from R to \mathscr{A} such that $\Phi(t) = I + \int_0^t A(s)\Phi(s) ds$ whenever t is in R.

THEOREM. Statements (i) and (ii) are equivalent and statements (iii) and (iv) are equivalent.

- (i) If f is in $\mathcal{L}^{\infty}[R, Y]$ there is a solution u of (NH) in $\mathcal{L}^{\infty}[R, Y]$.
- (ii) There are three supplementary projections P_{-1} , P_0 , and P_1 and a number K such that if t is in R then

$$\int_{-\infty}^{t} \|\Phi(t)P_{-1}\Phi(s)^{-1}\| ds + \left| \int_{0}^{t} \|\Phi(t)P_{0}\Phi(s)^{-1}\| ds \right|$$

$$+ \int_{t}^{\infty} \|\Phi(t)P_{1}\Phi(s)^{-1}\| ds \le K.$$

(iii) If f is in $\mathcal{L}^p[R, Y]$, p > 1, there is a solution u of (NH) in $\mathcal{L}^{\infty}[R, Y]$. (iv) There are P_{-1} , P_0 , P_1 , and K as in (ii) such that if t is in R then

$$\int_{-\infty}^{t} \|\Phi(t)P_{-1}\Phi(s)^{-1}\|^{q} ds + \left| \int_{0}^{t} \|\Phi(t)P_{0}\Phi(s)^{-1}\|^{q} ds \right|$$

$$+ \int_{t}^{\infty} \|\Phi(t)P_{1}\Phi(s)^{-1}\|^{q} ds \le K^{q},$$

where p + q = pq.

If, in (iii), we take p = 1, then (iv) can be replaced by (iv)* and we still have equivalence.

(iv)*
$$\begin{aligned} \|\Phi(t)P_{-1}\Phi(s)^{-1}\| &\leq K & \text{if } t \geq s, \\ \|\Phi(t)P_{0}\Phi(s)^{-1}\| &\leq K & \text{for all } (t,s) \text{ in } R \times R, \text{ and} \\ \|\Phi(t)P_{1}\Phi(s)^{-1}\| &\leq K & \text{if } t \leq s. \end{aligned}$$

The implications (ii) \rightarrow (i) and (iv) \rightarrow (iii) are both obvious. Let M_0 be the subspace of Y consisting of all values at zero of bounded solutions of (H). Let M_{-1} be a subspace such that $M_{-1} \oplus M_0$ is all values at zero of solutions of (H) bounded on R^+ , and let M_1 be similarly determined by $R^- = (-\infty, 0]$. Let M_{∞} be determined by $Y = M_0 \oplus M_{-1} \oplus M_1 \oplus M_{\infty}$. Let P_0, P_{-1}, P_1 , and P_{∞} be the projections of Y onto M_0, M_{-1}, M_1 , and M_{∞} respectively. If (i) holds then [4, Theorem 1] tells us that $P_{\infty} = 0$, so (ii) can now be proved with standard techniques (see [3, pp. 131–134]). Similarly, if (iii) holds, the integral

$$\int_{-\infty}^{\infty} \|P_{\infty}\Phi(s)^{-1}\|^q ds$$

exists, and the linear function Λ from $\mathcal{L}^p[R, Y]$ to Y given by

$$\Lambda[f] = \int_{-\infty}^{\infty} P_{\infty} \Phi(s)^{-1} f(s) \, ds$$

is identically zero, so $P_{\infty} = 0$. Now arguments similar to those of [1] can be used to establish (iii) \rightarrow (iv).

REFERENCES

- 1. R. Conti, On the boundedness of solutions of ordinary differential equations, Funkcial. Ekvac. 9 (1966), 23–26. MR 37 #3102.
- 2. W. A. Coppel, On the stability of ordinary differential equations, J. London Math. Soc. 39 (1964), 255-260. MR 29 #1393.
- 3. _____, Stability and asymptotic behavior of differential equations, D. C. Heath & Co., Boston, 1965. MR 32 #7875.
- 4. D. L. Lovelady, Boundedness and ordinary differential equations on the real line, J. London Math. Soc. (to appear).

DEPARTMENT OF MATHEMATICS, FLORIDA STATE UNIVERSITY, TALLAHASSEE, FLORIDA 32306