APPROXIMATION AND WEAK-STAR APPROXIMATION IN BANACH SPACES¹

BY DAVID W. DEAN

Communicated by Robert Bartle, January 16, 1973

ABSTRACT. If X^* has a weak-star basis and if X is separable, then X has a basis. If X^* has the weak-star λ -m.a.p. [a weak-star π_{λ} -decomposition], then X has the λ -m.a.p. [a $\pi_{\lambda+\lambda^2+\epsilon}$ -decomposition]. If X^* has a weak-star π_{λ} -decomposition and if X is separable, then X has a finite dimensional decomposition.

The problem of whether X is separable if X^* has a weak-star basis [8, p. 151] is unsolved, though there are candidates for a counterexample [3, 3.1], [6, pp. 243, 244]. In this note techniques developed in [5] are used, together with certain properties of weak convergence, to show that weak-star approximation methods in X^* will yield approximation properties in X.

In [5] the authors established very deep relationships between approximation methods in a Banach space X and its dual X^* . In particular they proved that if X^* has a basis, then X has a shrinking basis; and if X^* is a π_{λ} -space, then X is a π_{δ} -space for some $\delta > 1$. A fundamental tool in this work was the "principle of local reflexivity" [5], [6]. The basic corollary needed below is the following Theorem A [5, 3.1] or [4, p. 482], where $\mathcal{L}(B)$ is the space of bounded linear operators from B to B.

THEOREM A. Let T be a finite rank operator in $\mathcal{L}(X^*)$ and let $F \subset X^*$ have dim $F < \infty$. Let $\varepsilon > 0$. Then there is an S in $\mathcal{L}(X)$ such that $S^*(X^*)$ = $T(X^*)$, f(Sx) = Tf(x) for each f in F, x in X, and $||S|| \le (1 + \varepsilon)||T||$. If T is a projection, then taking F to include $T(X^*)$, S is a projection.

THEOREM 1. Let (T_{α}) be a net of finite rank operators in $\mathcal{L}(X^*)$ such that $||T_{\alpha}|| \leq \lambda$ for all α and $\lim T_{\alpha}f(x) = f(x)$ for each f in X^* , x in X. Then there is a net of finite rank operators (S_{β}) in $\mathcal{L}(X)$ such that $\lim S_{\beta}x = x$ for each x, $||S_{\beta}|| \leq \lambda$ for each β .

PROOF. For each finite-dimensional subspace F of X^* , use Theorem A to find $S_{\alpha,F}$ such that $f(S_{\alpha,F}x) = T_{\alpha}f(x)$ for every f in F, x in X, $S_{\alpha,F}^*(X^*) = T_{\alpha}(X^*)$ and $||S_{\alpha,F}|| \leq \lambda(1 + 1/(1 + \dim F))$. Let $(\alpha_1, F_1) \geq (\alpha_2, F_2)$, if $\alpha_1 \geq \alpha_2$, $F_1 \supset F_2$. Then $(1 + \dim(F))S_{\alpha,F}/(2 + \dim(F)) = R_{\alpha,F}$ has norm $\leq \lambda$ and $\lim_{x \to \infty} f(R_{\alpha,F}x) = f(x)$ for every f in X^* , x in X. Then a net (P_{β}) of convex combinations of $(R_{\alpha,F})$ has the property that $\lim_{x \to \infty} P_{\beta}x = x$ for

AMS (MOS) subject classifications (1970). Primary 46B15, 46A20; Secondary 47A65.
¹This work was partially supported by the Battelle Advanced Studies Center, Geneva.

each x (using [2, p. 477], for example).

REMARK 1. If X is separable and if (x_n) is dense in X, then choosing α_1 such that $\|P_{\alpha_1}x_1 - x_1\| < 1$ and $\alpha_{n+1} > \alpha_n$ such that $\|P_{\alpha_{n+1}}x_i - x_i\| < 1/(n+1)$ when $i \le n+1$, one constructs a sequence $S_n = P_{\alpha_n}$ such that $S_n x \to x$ for each x.

THEOREM 2. Let (T_{α}) be a net of finite rank projections in $\mathcal{L}(X^*)$ such that $T_{\alpha}(X^*) \supset T_{\beta}(X^*)$, if $\alpha > \beta$ and $\lim_{\alpha \to 0} T_{\alpha}(X) = f(x)$ for each f in X^* , x in X. Let X be separable. Then X has a finite-dimensional decomposition.

PROOF. If (T_{α}) is a sequence (T_n) , the proof proceeds easily from [5, 4.1] as follows. Set $Y = \bigcup T_n(X^*)$. Then $T_n y \to y$ for each y in Y and, choosing S_n as in Remark 1, the conditions of 4.1(c) in [5] are satisfied. For the general case choose (S_n) $(=P_{\alpha_n})$, as in Remark 1 above, such that (S_n) has the following property: If

$$P_{\alpha_n} = \sum_{i=1}^{k_n} a_i R_{(\alpha_i, F_i)}$$
 and $P_{\alpha_{n+1}} = \sum_{i=1}^{k_{n+1}} b_i R_{(\beta_i, G_i)}$

then

$$(\alpha_i, F_i) \leq (\beta_i, G_i)$$
 for each i, j, n

(e.g. [2, p. 477] or [1, p. 40]). Further, choose the $R_{\alpha,F}$ to be projections such that $R_{\alpha,F}^*(X^*) = T_{\alpha}(X^*)$, as promised in Theorem A above. Let $R_n = R_{(\alpha_i,F_i)}$, where (α_i,F_i) is larger than the indices in $\sum_{1}^{k_n} a_j R_{(\alpha_j,F_j)}$. Then $Q_n = R_n + P_{\alpha_n} - R_n P_{\alpha_n}$ is a projection such that $Q_n^*(X^*) = R_n^*(X^*) = R_{(\alpha_i,F_i)}^*(X^*) = T_{\alpha_i}(X^*)$, and $Q_{n+1}^*(X^*) \supset Q_n^*(X^*)$ for each n. This is computed in the proof of the Theorem 3 below using the method in [5, Lemma 4.3]. Set $Y = \bigcup Q_n^*(X^*)$ and apply [5, 4.1(c)].

COROLLARY 1. Let $X^* = \sum_{1}^{\infty} Y_i$, where each Y_i is finite dimensional, and for x^* in X^* there is a unique sequence (f_i) , $f_i \in Y_i$, such that $\lim_n \sum_{1}^n f_i(x) = x^*(x)$ for every x in X. If X is separable, then X has a finite-dimensional decomposition.

PROOF. The partial sum projections $V_n(X^*) = \sum_{i=1}^n Y_i$ are uniformly bounded [8, pp. 147–149]. Set $Y = \bigcup V_n(X^*)$. Then Y is separable and, by Theorem 2, X has a finite-dimensional decomposition.

COROLLARY 2. Let X^* have w^* -basis (f_n) and suppose X is separable. Then X has a basis.

PROOF. By hypothesis each f in X^* has an expansion $\sum_{1}^{\infty} a_n f_n$ where the convergence is in the w^* -topology. Set $V_n f = \sum_{1}^n a_n f_n$. Let $R_{n,F}$ be a projection on X as in Theorem A, such that $R_{n,F}^*(X^*) = V_n(X^*) = [f_1, \ldots, f_n]$

 f_n]. Then $\lim_{(n,F)} f(R_{n,F}x) = f(x)$ for every f in X^* . Since X is separable, a sequence of convex combinations (P_n) of $(R_{n,F})$ converges strongly $(\lim P_n x = x)$ to the identity, and $P_j^*(X^*) \subset [f_n]$. Since $V_n y \to y$ for all y in $[f_n]$ and $P_n x \to x$ for all x in X, Theorem 4.1 in [5] yields that X has a finite-dimensional decomposition given, say, by (Q_n) . Moreover, $Q_n^*(X^*)$ is ε -close to some $V_{k(n)}(X^*)$ [5, 4.9]. This assures that $\{(Q_{n+1}^* - Q_n^*)(X^*)\}$ have bases with uniformly bounded basis constants [5, p. 501], and so $\{(Q_{n+1} - Q_n)X\}$ have bases with uniformly bounded basis constants [5, p. 502]. Thus, X has a basis (e.g., [5, Lemma 2.2]).

W. B. Johnson, in conversation with the author, observed that the methods above, together with the proof of Lemma 4.3 in [5], yield the following theorem.

THEOREM 3. Let (T_{α}) be a net of finite rank projections such that $||T_{\alpha}|| \leq \lambda$ for every α and such that if $\alpha > \beta$, then $T_{\alpha}X^* \supset T_{\beta}X^*$. Suppose further that $\lim_{\alpha} T_{\alpha}f(x) = f(x)$ for each f in X^* and x in X. Then X is a $\pi_{\lambda^2 + 2\lambda + \delta}$ space for each $\delta > 0$.

PROOF. If the (T_{α}) of Theorem 1 are projections with $T_{\alpha}(X^*) \supset T_{\beta}(X^*)$ when $\alpha > \beta$, and if the $R_{\alpha,F}$ in the proof of Theorem 1 are chosen to be projections such that $R_{\alpha,F}^*(X^*) = T_{\alpha}(X^*)$, let (U_{β}) be the corresponding net of finite rank operators such that $\lim U_{\beta}x = x$ for every x. If $U_{\beta} = \sum_{1}^{n} a_{i}R_{\alpha_{i},F_{i}}$, where $(\alpha_{1}, F_{1}) < \cdots < (\alpha_{n}, F_{n})$, let $S_{\beta} = R_{\alpha_{n},F_{n}} + U_{\beta} - R_{\alpha_{n},F_{n}}U_{\beta}$. Then

$$S_{\beta}^{*}(X^{*}) = R_{\alpha_{n},F_{n}}^{*}(X^{*}) + U_{\beta}^{*}(X^{*}) - U_{\beta}^{*}R_{\alpha_{n},F_{n}}^{*}(X^{*}) \subset T_{\alpha_{n}}(X^{*})$$

and

$$S_{\beta}^* T_{\alpha_n} x^* = T_{\alpha_n} x^*$$

for each x^* in X^* . Thus, S_{β}^* is a projection onto $T_{\alpha_n}(X^*)$. It follows that (S_{β}) is a net of projections. Moreover, if $||U_{\beta}x - x|| < \delta$, then

$$||S_{\beta}x - x|| = ||R_{\alpha_{n}, F_{n}}x + U_{\beta}x - R_{\alpha_{n}, F_{n}}U_{\beta}x - x||$$

$$\leq ||R_{\alpha_{n}, F_{n}}|| ||x - U_{\beta}x|| + ||U_{\beta}x - x|| \leq (\lambda + \varepsilon + 1)\delta$$

so that $\lim S_{\beta}x = x$.

If X has a finite-dimensional decomposition [basis], then X^* has a weak-star finite-dimensional decomposition [weak-star basis]. If X has a π_{λ} -decomposition [λ -m.a.p.], then X^* has the weak-star λ -m.a.p. It is not known to the author if X^* has a weak-star π_{λ} -decomposition. An answer to this question will answer, via Theorem 2, whether X has a finite-dimensional decomposition if X is a separable π_{λ} -space.

REFERENCES

1. M. M. Day, Normed linear spaces, Springer-Verlag, Berlin; Academic Press, New York,

1962. MR 26 # 2847.

- 2. N. Dunford and J. T. Schwartz, *Linear operators*. I: *General theory*, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302.

- 3. J. A. Dyer, The mean Stieltjes integral representation of a bounded linear transformation, J. Math. Anal. Appl. 8 (1964), 452–460. MR 28 # 4079.

 4. William B. Johnson, On the existence of strongly series summable Markuschvich bases in Banach spaces, Trans. Amer. Math. Soc. 157 (1971), 481–486. MR 43 # 7914.

 5. W. B. Johnson, H. P. Rosenthal and M. Zippin, On bases, finite dimensional decompositions and weaker structures in Banach spaces, Israel J. Math. 9 (1971), 488–506. MR 43 #6702.
- 6. J. Lindenstrauss and H. P. Rosenthal, The \mathcal{L}_p -spaces, Israel J. Math. 7 (1969), 325–349.
- MR 42 #5012. 7. H. P. Rosenthal, On injective Banach spaces and the spaces $L^{\infty}(\mu)$ for finite measures μ , Acta Math. 124 (1970), 205–248. MR 41 #2370.
- 8. I. Singer, Bases in Banach spaces. Vol. 1, Die Grundlehren der math. Wissenschaften, Band 154, Springer-Verlag, Berlin and New York, 1970.

DEPARTMENT OF MATHEMATICS, OHIO STATE UNIVERSITY, COLUMBUS, OHIO 43210