DERIVATION RANGES AND THE IDENTITY

BY J. H. ANDERSON

Communicated by Jack Feldman, December 15, 1972

Introduction. If \mathfrak{A} is a C^* -algebra containing the identity and T belongs to \mathfrak{A} , then the (inner) derivation induced by T is the operator Δ_T acting on \mathfrak{A} which maps X (in \mathfrak{A}) to TX - XT = [T, X]. It has been known for many years that I (the identity in \mathfrak{A}) is not in the range of Δ_T for any T(I is not a commutator)[4]. J. P. Williams has asked [5] if there is a T in \mathfrak{A} such that I is in the uniform closure of the range of Δ_T . In this paper we show that such T's do exist. In fact, if $\mathscr{A}(\mathfrak{A}) = \{T \in \mathfrak{A}: I \text{ is in the}$ closure of the range of Δ_T } we will show that there is a C^* -algebra \mathfrak{A} such that $\mathscr{A}(\mathfrak{A})$ is uniformly dense in \mathfrak{A} . It then follows that $\mathscr{A}(\mathscr{B}(\mathscr{K}))$ is nonempty where $\mathscr{B}(\mathscr{K})$ denotes the algebra of bounded linear operators acting on complex infinite dimensional Hilbert space.

Ampliations. In what follows \mathscr{H} will always denote a *separable* infinite dimensional complex Hilbert space. Given T in $B(\mathscr{H})$ the *ampliation* of T is denoted by $T \otimes I$ and is by definition the operator acting on the direct sum of \aleph_0 copies of \mathscr{H} which is determined by the matrix

$$T \otimes I = \begin{bmatrix} T & 0 & 0 \\ 0 & T & 0 \\ 0 & 0 & T \\ \end{bmatrix}.$$

It is well known that the commutant of $T \otimes I$ contains the set of matrices of the form

$$I \otimes S = \begin{bmatrix} s_{11}I & s_{12}I & s_{13}I \\ s_{21}I & s_{22}I & s_{23}I \\ s_{31}I & s_{32}I & s_{33}I \\ \end{bmatrix},$$

where $S = (s_{ij})$ is the matrix of some element of $\mathscr{B}(\mathscr{H})$. It is also well known that $I \otimes S$ is unitarily equivalent to $S \otimes I$.

In [1] Brown and Pearcy showed that there are sequences of operators X_n and Y_n in $\mathscr{B}(\mathscr{H})$ such that $[X_n, Y_n]$ tends uniformly to the identity as

Copyright © American Mathematical Society 1973

AMS (MOS) subject classifications (1970). Primary 47A50, 47B47; Secondary 46L05, 47C10.

Key words and phrases. Derivation, derivation range, commutator.

 $n \to \infty$. It follows easily from the foregoing remarks that $[I \otimes X_n, I \otimes Y_n]$ also tends uniformly to the identity. Furthermore, replacing X_n by $X_n/n ||X_n||$ and Y_n by $n ||X_n|| Y_n$ if necessary, we may assume that the norm of X_n (and, hence, the norm of $I \otimes X_n$) tends to 0.

Finally since the countable direct sum of separable Hilbert spaces is again a separable Hilbert space, we may view $T \otimes I$ and $I \otimes T$ as elements of $\mathscr{B}(\mathscr{H})$ and, where no confusion can result, this will be done.

The class $\mathscr{E}(\mathfrak{A})$. Let $\mathscr{E}(\mathfrak{A})$ be the set of all T in \mathfrak{A} such that there exist sequences X_n and Y_n in \mathfrak{A} with the properties

(i) $||X_n|| \to 0 \text{ as } n \to \infty$,

(ii) $||I - [T + X_n, Y_n]|| \to 0 \text{ as } n \to \infty.$

Note that if \mathfrak{A} is commutative, then $\mathscr{E}(\mathfrak{A})$ is empty. On the other hand, the remarks of the preceding section show that I is in $\mathscr{E}(\mathscr{B}(\mathscr{H}))$. Note also that if T is in $\mathscr{E}(\mathfrak{A})$, then so is UTU^* for all unitary elements U in \mathfrak{A} . Most of the remainder of the paper will be devoted to showing that there is a C^* -algebra \mathfrak{A} such that $\mathscr{E}(\mathfrak{A}) = \mathfrak{A}$. Our results then follow easily from the Baire category theorem.

THEOREM 1. If T is in $\mathscr{B}(\mathscr{H})$ then $T \otimes I$ (viewed as an element of $\mathscr{B}(\mathscr{H})$) is in $\mathscr{E}(\mathscr{B}(\mathscr{H}))$.

PROOF. Let $I \otimes X_n$ and $I \otimes Y_n$ be as in the preceding section. Then, since $T \otimes I$ and $I \otimes Y_n$ commute, $[T \otimes I + I \otimes X_n, I \otimes Y_n] = [I \otimes X_n, I \otimes Y_n]$ which tends uniformly to the identity.

The following facts will be needed in the sequel:

(A) If $\{S_n\}$ is a sequence of operators on a Hilbert space of any dimension, then the C*-algebra generated by the S_n 's (the smallest C*-algebra containing all the S_n 's) is separable.

(B) Let \mathscr{K} be a Hilbert space of dimension 2^c where c denotes the cardinality of the continuum. If T is in $\mathscr{B}(\mathscr{K})$ then $T = \sum \bigoplus T_{\alpha}$ where each T_{α} acts on separable Hilbert space. That is, T is the direct sum of elements in $\mathscr{B}(\mathscr{K})$. (If f is a unit vector in \mathscr{K} and \mathfrak{A} is the C*-algebra generated by T, then $\{Sf: S \in \mathfrak{A}\}$ is a separable subspace of \mathscr{K} which reduces T.)

(C) The cardinality of $\mathscr{B}(\mathscr{H})$ is c (every element of $\mathscr{B}(\mathscr{H})$ is determined by an \aleph_0 by \aleph_0 matrix).

THEOREM 2. If T is in $\mathscr{B}(\mathscr{K})$ (\mathscr{K} has dimension 2^c) then T is unitarily equivalent to an operator of the form $T_0 \oplus \sum \bigoplus (T_a \otimes I)$ where the closure of the range of T_0 has dimension less than or equal to c and T_a is in $\mathscr{B}(\mathscr{K})$. Thus, except on a subspace of dimension c, T is unitarily equivalent to a direct sum of ampliations.

PROOF. From (B) above we know that $T = \sum \bigoplus T_{\alpha}$ where each T_{α}

706

belongs to $\mathscr{B}(\mathscr{H})$. Let \mathscr{G}_{α} be the (equivalence) class of all indices β such that T_{β} is unitarily equivalent (in $\mathscr{B}(\mathscr{H})$) to T_{α} . Then, since there are c operators in $\mathscr{B}(\mathscr{H})$, there are at most c distinct \mathscr{G}_{α} 's. Let \mathscr{G}_{0} be the union of all those \mathscr{G}_{α} whose cardinality is less than or equal to c. Then the cardinality of \mathscr{G}_{0} is less than or equal to c and, thus, the closure of the range of $T_{0} = \sum_{\alpha \in \mathscr{G}_{0}} \bigoplus T_{\alpha}$ has dimension less than or equal to c. Now consider $T_{1} = \sum_{\alpha \in \mathscr{G}_{1}} \bigoplus T_{\alpha}$ where \mathscr{G}_{1} is a class of indices which does not intersect \mathscr{G}_{0} . Then T_{1} is the (uncountable) direct sum of unitarily equivalent operators and is, therefore, unitarily equivalent to a direct sum of ampliations. The remainder of the proof is now clear.

The main theorem. Recall that if \mathscr{I} is the uniform closure of the set of all T in $\mathscr{B}(\mathscr{K})$ such that the closure of the range of T has dimension strictly less than 2^c , then \mathscr{I} is a proper two-sided ideal in $\mathscr{B}(\mathscr{K})$ [2, Theorem 6.4] and $\mathfrak{A} = \mathscr{B}(\mathscr{K})/\mathscr{I}$ is a C^* -algebra [3, p. 43, 1.17.3].

THEOREM 3. Let $\mathfrak{A} = \mathfrak{B}(\mathcal{K})/\mathcal{I}$. Then $\mathscr{E}(\mathfrak{A}) = \mathfrak{A}$.

PROOF. Let T be in $\mathscr{B}(\mathscr{K})$. Then, by Theorem 2, UTU^* has the form $T_0 \oplus \sum \bigoplus (T_a \otimes I)$ for some unitary U in $\mathscr{B}(\mathscr{K})$. Let $X'_n = 0 \oplus \sum \bigoplus (I \otimes X_n)$ and $Y'_n = 0 \oplus \sum \bigoplus (I \otimes Y_n)$ where X_n and Y_n are as in Theorem 1 and the direct sums are formed in the obvious way. Let P be the projection onto the closure of the range of T_0 . Then $I - P = \lim_n [UTU^* + X'_n, Y'_n]$. But the dimension of $P\mathscr{K}$ is less than or equal to c. Hence I - P and I belong to the same coset in \mathfrak{A} . Thus, the coset containing UTU^* is in $\mathscr{E}(\mathfrak{A})$ and, hence, the coset containing T is in $\mathscr{E}(\mathfrak{A})$.

COROLLARY 4. $\mathscr{A}(\mathfrak{A})$ is a (uniformly dense) set of second category in \mathfrak{A} .

PROOF. Let $B_n = \{T \in \mathfrak{A} : ||I - [T, X]|| \ge 1/n$, for all X in $\mathfrak{A}\}$. It is easy to check that B_n is uniformly closed. Now if B_n had nonempty interior for some *n* then $\mathscr{E}(\mathfrak{A})$ could not be all of \mathfrak{A} . Therefore, $\bigcup B_n$ is a set of first category in \mathfrak{A} and $\mathscr{A}(\mathfrak{A}) =$ the complement of $\bigcup B_n$ is a (uniformly dense) set of second category in \mathfrak{A} .

COROLLARY 5. $\mathscr{A}(\mathscr{B}(\mathscr{H})) \neq \emptyset$. That is, there is an operator T in $\mathscr{B}(\mathscr{H})$ such that I is in the uniform closure of the range of Δ_T .

PROOF. Let \mathfrak{A} be a C^* -algebra such that $\mathscr{A}(\mathfrak{A}) \neq \emptyset$. Represent \mathfrak{A} as an algebra of operators acting on a Hilbert space \mathscr{K} (possibly of high dimension). Let T and Y_n be elements of \mathfrak{A} such that $[T, Y_n]$ tends uniformly to the identity. Then \mathfrak{A}_1 , the C^* -algebra generated by T and the Y_n 's is separable and if f is any unit vector in \mathscr{K} , $\{Sf: S \in \mathfrak{A}_1\}$ is a separable subspace of \mathscr{K} which reduces T and each Y_n . Let P be the projection onto this subspace, T' = PT restricted to $P\mathscr{K}$, and $Y'_n = PY_n$ restricted to $P\mathcal{K}$. Then the commutator of T' and Y'_n tends uniformly to the identity operator in $\mathscr{B}(P\mathscr{K})$.

Concluding remarks. By taking direct sums it is clear that $\mathscr{A}(\mathscr{B}(\mathscr{K})) \neq \emptyset$ as long as the dimension of \mathscr{K} is infinite. On the other hand, if \mathscr{K} is finite dimensional an easy (and familiar) trace argument shows that the identity is uniformly bounded away from every commutator.

The class $\mathscr{E}(\mathfrak{A})$ seems to be of interest in its own right. It is easy to show that $\mathscr{E}(\mathfrak{A})$ is uniformly closed and that if T belongs to $\mathscr{E}(\mathfrak{A})$ then so does STS^{-1} for every invertible element S in \mathfrak{A} .

In particular, if \mathscr{C} is the Calkin algebra $(\mathscr{B}(\mathscr{H}) \mod \mathfrak{l})$ modulo the ideal of compact operators) and T_e denotes the coset in $\mathscr C$ which contains the operator T, it can be shown that $\mathscr{E}(\mathscr{C})$ contains every element of the form N_e where N is normal in $\mathscr{B}(\mathscr{H})$ and every element of the form $(Q \oplus 0)_e$ where Q is quasinilpotent and the other direct summand is infinitedimensional. On the other hand, if V is the unilateral shift of finite multiplicity, we do not know if V belongs to $\mathscr{E}(\mathscr{C})$. (Of course, since the shift of infinite multiplicity is an ampliation, its coset must belong to $\mathscr{E}(\mathscr{C})$.)

The author wishes to thank C. R. DePrima for stimulation provided during the preparation of this paper.

REFERENCES

Arlen Brown and Carl Pearcy, Structure of commutators of operators, Ann of Math. (2) 82 (1965), 112–127. MR 31 # 2612.
Erhard Luft, The two-sided closed ideals of the algebra of bounded linear operators of a

Hilbert space, Czechoslovak Math. J. 18 (93) (1968), 595-605. MR 38 # 6362.
3. Shôichirô Sakai, C*-algebras and W*-algebras, Springer, Berlin, 1971.

4. H. Wielandt, Ueber die Unbeschränktheit der Operatoren des Quantenmechanik, Math. Ann. 121 (1949), 21. MR 11, 38.

5. J. P. Williams, On the range of a derivation, Pacific J. Math. 38 (1971), 273-279.

DEPARTMENT OF MATHEMATICS, CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA, CALIFORNIA 91109

708