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Solomon Lefschetz began and ended his scientific career as a theoretical 
engineer. In between, he accomplished the work of several lifetimes of 
creative foundational research in algebraic geometry and topology, 
complemented by important contributions to such diverse fields of 
mathematics as differential equations, control theory, and nonlinear 
mechanics. In addition to his fundamental mathematical discoveries and 
authoritative expositions, the influence of Professor Lefschetz will long 
be spread by the mathematical organizations he established, and the 
students of all levels he inspired by his courageous enthusiasm, humane 
leadership, and critical scholarship. 

Born in Moscow on 3 September 1884, graduate engineer at Ecole 
Centrale of Paris in 1905, mathematical doctorate from Clark University 
in 1911, Professor of Mathematics at Princeton from 1925-1953, President 
of the American Mathematical Society 1935, visiting Professor at the 
Center for Dynamical Systems at Brown University after 1964, died in 
Princeton on 5 October 1972 ; the personal data of the life of Solomon 
Lefschetz can be read from biographical sources such as The New York 
Times 7 October 1972, or the World Who's Who in Science 1968. In 
this brief note we can only mention some of his most famous mathematical 
achievements and comment, from personal knowledge, on some of the 
remarkable scientific activities and profound influences flowing from his 
later life. 

The best source for understanding the significance of the mathematical 
work of Lefschetz lies in his own writings. In 1971 he edited a volume, 
Selected papers [136], of his major mathematical papers and monographs, 
including a complete bibliography through 1969 to which the final 
entries have been added below. Of the eighteen articles in the Selected 
papers the first several deal with global analysis and topology of algebraic 
varieties. These include the famous paper, 

On certain numerical invariants of algebraic varieties, with applications 
to abelian varieties [24] (Awarded Prix Bordin of the Paris Academie des 
Sciences 1919, and Bôcher Memorial Prize of American Mathematical 
Society 1924), 

the extensive monograph in the Borel Series, 
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VAnalysis situs et la géométrie algébrique [29], 

as well as the reflective review article of 1968, 

A page of mathematical autobiography [130]. 

The problems that Lefschetz solved concerned the determination of 
the number of independent meromorphic differential p-forms of various 
kinds on a nonsingular algebraic variety Vn, and the relation of these 
numbers to the Betti numbers Rp of the integral homology groups of V". 
Lefschetz writes a half-century later [130] : 

'It was the general implicit or explicit understanding among algebraic 
geometers of my day that an algebraic n-variety Vn (n dimensional variety) 
is the partial or complete irreducible intersection of several complex 
polynomials or "hypersurfaces" of a projective space Sn+k, in which Vn 

had no singularities (it was homogeneous). Thus Vn was a compact real 
2n-manifold M2n (complex dimension n)... 

Incidentally, the recent brilliant reduction of singularities by Hironaka 
has shown that the varieties as just described are really entirely general.' 

Thus a nonsingular algebraic variety Vn is a compact complex sub-
manifold, defined by polynomial equations in some complex projective 
space. Hence Vn is itself a complex manifold (in fact, a Kàhler manifold) 
with holomorphic local coordinate charts, say (z1, z2 , . . . , z"), in terms of 
which one can define holomorphic and meromorphic complex functions 
and differential forms. 

For n — 1, V1 is an algebraic curve or Riemann surface. In this case 
the theory of abelian integrals ƒ R(z, y) dz belongs to classical function 
theory. Here the meromorphic differential 1-form co1 = R(z,y)dz, where 
R(z, y) is a rational function of the complex variable z and of the algebraic 
function y(z) defining V1. Riemann showed that the number of holo­
morphic differentials (linearly independent over the complex field) is 
just the genus of the curve V1. 

On Vn the differential p-forms (or integrals) under discussion, all 
assumed to be everywhere meromorphic, can be written in local coordi­
nates œp — YJ aji,...,jp(z) dzjl... dzjp. We say that œp is 

(a) of the first kind when it is holomorphic everywhere on Vn
9 

(b) of the second kind if, in the neighborhood of any point, it differs 
from a locally holomorphic p-form by the exterior derivative of a (p — 1)-
form on Vn. 

A p-form œp is closed if dcop = 0 on Vn, and a>p is exact if it equals the 
exterior derivative of some (p — l)-form. Two p-forms are to be regarded 
as equivalent if their difference is exact. The main problem is to determine 
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the complex vector space yq of equivalence classes of closed p-forms, 
of first and second kinds, on an algebraic variety Vn. 

For the case of an algebraic surface ir2 Lefschetz proved ([130] or 
[136, pp. 25,33]) (the first statement clarifying earlier results of Picard and 
Poincaré, and the second exhibiting his principal results for surfaces) 

closed l-forms of the first kind make up a Yq with q — %RU 

and 

closed 2-forms of the second kind make up a YpQ and the basic formula 
holds, 

p0 = R2- p, 

where p is the Betti number of algebraic 2-cycles. 

The procedure of computing p, the number of independent algebraic 
2-cycles, is implemented by the result that an algebraic 2-cycle is precisely 
an algebraic curve (using virtual curves and algebraic dependence in the 
sense of Severi). Lefschetz extends his results to general varieties Vn and, 
in particular, clarifies the role of algebraic (2rc — 2)-cycles in the theorem 
([130] or [136, p. 38]), 

for hypersurfaces of Vn algebraic dependence and homology in Vn are 
equivalent relations. 

For the topology of algebraic varieties the results strike one as even 
more sensational (see Hodge [1A]), although the mystery was afterwards 
somewhat exorcised through the theory of harmonic forms on Kâhler 
manifolds. 

For an algebraic variety Vn the odd-dimensional Betti numbers are even, 
and furthermore Rp ^ Rp-2 for 2 ^ p ^ n. 

Thus, not every orientable compact 4-manifold can be an algebraic 
surface or, as Lefschetz asserts in his Borel Tract, 

'Les surfaces et les variétés algébriques accusent, au point de vue de 
1'Analysis Situs, des différences profondes avec les courbes, différences dues 
surtout à ce qu'elles ne sont pas les variétés bilatères les plus generales de 
leur dimension (quatre pour les surfaces, 2d pour les variétés à d dimen­
sions).' 

To understand the method of approach to these theorems, and their 
significance to further mathematics we are fortunate to be able to depend 
on two remarkable expositions, 
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A page of mathematical autobiography, by S. Lefschetz [130], 

and 

Professor Lefschetz's contributions to algebraic geometry : an appreciation, 
by W. V. D. Hodge [1A]. 

The second item appeared in connection with a Symposium in Algebraic 
Geometry and Topology at Princeton University in 1954 in honor of 
Professor Lefschetz on his seventieth birthday. 

Today when the language of algebraic geometry, involving sheaves 
and schemes, seems remote from the interests of most mathematicial 
analysists, it is difficult to recall that a couple of generations ago this 
subject concerned the evaluation of line and surface integrals of multi­
valued functions in the complex domain. 

'In its early phase (Abel, Riemann, Weierstrass), algebraic geometry 
was just a chapter in analytic function theory' ([130] or [136, p. 14]). 

Lefschetz approached this subject via the classical route, following 
Picard, but using some of the elements of projective geometry and com­
binatorial topology introduced by Riemann and Poincaré. 

'One of the first applications of his work on the topology of algebraic 
varieties which Lefschetz made was to the theory of integrals of the second 
kind. Some of his work on this subject preceded the work on the topology 
of varieties, and it seems fairly clear that he was led to the topological work 
in order to make progress possible in the study of integrals' [1A]. 

Even in his text Algebraic geometry [93], written in the modern algebraic 
style in 1953, Lefschetz writes 

'At all events one cannot write on algebraic geometry today outside of 
the general framework of algebra. On the other hand many have come to 
algebraic geometry and have been attracted to it through analysis, and 
it would seem most desirable to preserve this attraction and this contact.' 

An insight into the direct and bold methods employed by Lefschetz 
is available in the following sections of the autobiographical sketch 
[130]: 

§7 "Certain properties of the surface F. Its characteristic", and 
§8 "One-cycles of F" . 

In this description Lefschetz considers the algebraic surface V2 = F 
represented in a cartesian space of 3-complex variables by 

F(x,y,z) = 0 

which is in general position relative to the axes; For each fixed value of 
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y = const, let Hy be the hyperplane-section in the surface F. In general 
Hy is an algebraic curve (a Riemann surface of an algebraic function of one 
variable), excepting a finite set of planes y = ak which are tangent to F. 
Then Lefschetz concludes 

I. Every Hy9 y not an ak, is of fixed genus p. 

II. Every Hy is irreducible. 

III. The plane y = ak has a unique point of contact Ak with F, and 
Ak is a double point of Hak with distinct tangents. Hence the genus of 
Hakisp- 1. 

With this geometric picture, Lefschetz proceeds to make an explicit 
cellular decomposition of Hy, and then of F, to compute the Euler charac­
teristic of the surface F. 

The next step was to compute the number of independent (in the sense 
of homology ~ ) 1-cycles in order to calculate the Betti number Ri(F). 
Picard had proved that every 1-cycle y1 of F is homologous to a 1-cycle 
contained in a section Hr Also Hy contained a certain number r of 1-
cycles which are invariant as y varies. That is, such a cycle y1 situated say 
in Ha (for a ± %) has the property that as y describes any closed path 
from a back to a on the Riemann sphere Sy, the cycle y1 returns to a cycle 
~yx in Ha. 

On the other hand as y describes a path aak on Sy a certain 1-cycle 
<5fc of Ha tends to the point of contact Ak and hence is ~ 0 on Hak. This is 
the vanishing cycle as y -» ak. Using these vanishing cycles d\, and their 
intersection multiplicities, or Kronecker indices (y1, <5£), with other 
1-cycles on Ha, Lefschetz proves ([130] or [136, p. 22]) 

THEOREM. N.a.s.c. for invariance of the cycle y1 is that every (y1, ôk) = 0; 

and then the desired result for the first Betti number of the surface F, 

THEOREM. The number of invariant cycles of Hy is equal to the Betti 
number Rx(F) and both are even : r = Rx = 2q. 

To summarize the significance of these methods and results in algebraic 
geometry we turn to the Appreciation by Hodge [1A] : 

'Moreover, Lefschetz's work is the direct inspiration of all researches 
which have taken place subsequently in the theory of complex manifolds. 
In fact, it is not too much to say that our greatest debt to Lefschetz lies 
in the fact that he showed us that a study of topology was essential for 
all algebraic geometers . . . 

To speculate on what might have been, had some historical event not 
taken place, is a singularly useless occupation, and any opinion on how 
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algebraic geometry would have developed without Lefschetz's interven­
tion can only be a personal one. I am, however, in a position to state one 
incontrovertible fact. The idea of generalizing the notion of an algebraic 
integral to give a theory of harmonic integrals on an algebraic variety 
arose out of a study of Chapter IV of Lefschetz's Borel Tract, and an 
attempt to carry the work of that chapter further, and but for the influence 
that Tract had on me I should never have thought of the idea... 

No single person can claim to be the sole founder of the theory of complex 
manifolds, but when one considers how many of the properties derived 
by Lefschetz for algebraic varieties now hold their place in the theory of 
complex manifolds, and how he influenced decisively so many who have 
contributed to this theory, one must accord him an honored place among 
the founders of a great branch of mathematics ; and this without even 
taking account of his influence, through his work in pure topology, 
on the topologists who have helped to build the theory. It seems clear to 
me that Lefschetz by his work on the topology and transcendental theory 
of algebraic varieties has been a major influence in turning the minds of 
geometers in new and fruitful directions, and in so doing he has achieved 
what it is given to few to do.' 

And finally Lefschetz himself reviewed his contribution to algebraic 
geometry [130] : 

'As I see it at last it was my lot to plant the harpoon of algebraic topology 
into the body of the whale of algebraic geometry.' 

The main contributions of Lefschetz to algebraic topology were his 
fixed point theorem for manifolds, and the development of the algebraic 
machinery of singular chain complexes, relative homology, and duality 
theory necessary to obtain the corresponding fixed point formula for 
general locally connected spaces. Thirteen articles in his Selected papers 
chart this route. Through all this work, culminating in the Colloquium 
Publication of 1942 [79], Algebraic topology, the common thread is the 
interest in the intersection properties of cycles. In this sense the topological 
researches of Lefschetz flowed uninterruptedly from his studies of the 
intersection properties of the vanishing cycles on algebraic surfaces. 

In his two famous papers of 1926 and 1927, Intersections and transfor­
mations of complexes and manifolds [33], and Manifolds with a boundary 
and their transformations [36], Lefschetz obtains his fixed point theorem 
as a special result within his theory of coincidences of cycles. In the first 
of the two papers, mainly devoted to the proof of the fixed point theorem 
for compact orientable manifolds without boundaries, Lefschetz writes 

The principle of the method is best explained by means of a very simple 
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example. Let f(x) and (p(x) be continuous and uni-valued functions over 
the interval [0,1], and let their values on the interval also be between 
0 and 1. It is required to find the number of solutions of f(x) = cp(x\ 
0 ^ x S 1. 

Graphically the problem is solved by plotting the curvilinear arcs 

y = f(x), y = <p(x\ O g x g l , 

and taking their intersections. A slight modification of the functions may 
change the number of solutions, even make them become infinite in 
number. However, the difference between the numbers of positive and 
negative crossings of sufficiently close polygonal approximations to the 
arcs is a fixed number, their Kronecker index. Its determination is then a 
partial answer to the question, and indeed seemingly the only possible 
general answer. 

The two complexes whose product is taken in this case are the unit 
segments on the x and y axes, their product being the square whose sides 
they are. Replace the unit segments by two identical manifolds of n 
dimension, Mn and M'n, the square by the M2n image of their pairs of 
points (product of the two), the arcs by the manifolds on M2„ and the 
exact situation of Part II is obtained.' 

Here Lefschetz counts the number of coincidences of the maps f(x) 
and q>(x) by the intersection multiplicity or Kronecker index of their graphs 
in the unit square. If (p{x) = x is the identity map, then the fixed points of 
f(x) are obtained as solutions of f(x) = x on 0 ^ x ^ 1. There are two 
failures of this example to illustrate the full approach to the general case 
where ƒ is a continuous map of a compact orientable manifold Mn into 
itself: 

(a) The unit segment [0,1] is not a cycle as is Mn, since it has a nonempty 
boundary, and the intersection theory of cycles is not directly applicable. 

(b) The unit segment [0,1] has dimension 1, and higher dimensional 
spaces require deeper insight. 

The first difficulty can be bypassed for the moment by replacing [0,1] 
by the circle S1, the square by the torus T2 = S1 x S1, and demanding 
that ƒ and q> satisfy suitable periodicity conditions. In this case the 
"average slopes" of the graphs of ƒ and cp in the plane (using R2 as the 
covering space of T2), are significant and these can be expressed in terms 
of the induced homomorphisms of the homology group H^S1) = Z. 
The second difficulty is essentially the heart of the Lefschetz analysis, 
and homology at all dimensions must be considered. In the 1926 paper 
Lefschetz develops the fixed point theory for orientable manifolds without 
boundary, and in the paper of 1927 he extends his theory to manifolds with 
boundary using relative homology groups. He phrases his fixed-point 
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criterion in terms of an integral number L( ƒ ), which reduces to the Euler-
characteristic of the space X when ƒ is homotopic to the identity map, 
that is, when ƒ is a deformation of X. 

For an exposition of the precise results we turn to an impressive 
article by N. E. Steenrod [1 A] : 

The work and influence of Professor S. Lefschetz in algebraic topology. 

The basic step toward a full-fledged result (on fixed point theory) was 
Lefschetz's discovery in 1923 of a formula. Its description runs as follows. 
Let ƒ be a continuous map of a topological space X into itself. For each 
dimension n, ƒ induces an endomorphism ƒ„ of the homology group 
Hn(X) based on the rational numbers R as coefficient group. Now Hn(X) 
is a vector space over R. If its rank is finite, there is assigned a numerical 
invariant of fn called its trace and denoted by Tr( ƒ„). The trace is computed 
by choosing a base for Hn and taking the trace of the corresponding 
matrix representation of ƒ„. Then the Lefschetz number of ƒ, denoted by 
L( ƒ ), is given by 

00 

L(f)= X(-l)"Tr(/„). 
n = 0 

It is clear that restrictions must be imposed if L( ƒ) is to be well defined. 
It suffices, for example, to require that X be the space of a finite complex. 
Then it can be shown that Tr( ƒ„) is an integer, and it is zero in dimensions 
exceeding that of the complex ; hence L(f ) is defined and is an integer. 

The conclusion of the fixed point theorem reads : If L( ƒ ) ^ 0, then ƒ 
has at least one fixed point (i.e. there is a point xe X such that f(x) = x). 

The conclusion is valid whenever X is the space of a finite complex. 
This result was proved by Lefschetz in 1928. 

His initial theorem in 1923 asserted the conclusion only when X is a 
compact orientable manifold (without boundary). . . 

Although the fixed-point theorem for manifolds is an extremely beauti­
ful result, Lefschetz must have been dissatisfied by the fact that it did not 
include the fixed-point theorem of Brouwer for an n-cell. A cell is not a 
manifold. However, it is a manifold with boundary which is itself a 
manifold, i.e. it is a relative manifold. If the techniques used in proving the 
fixed-point formula for manifolds could be extended to relative manifolds, 
then the Brouwer theorem might be included. The techniques in question 
were products, intersections, and duality. . . 

Successive papers marked successive steps in the process from closed 
manifolds to relative manifolds, to general complexes, to the final form 
for locally connected spaces. In consequence he was a central participant 



1973] SOLOMON LEFSCHETZ AN APPRECIATION IN MEMORIAM 671 

in one of the major trends of the period 1925-1935, namely, the extension 
of the methods of combinatorial analysis situs to general topological 
spaces. 

It is indicative of the influence of Lefschetz that the present-day usage 
of the terms "topology" and "algebraic topology" is due to him. Before 
the appearance in 1930 of his first Colloquium Publication entitled 
Topology, the subject was known as analysis situs. When his second 
Colloquium Publication entitled Algebraic topology appeared in 1942, 
the adjective "combinatorial" fell into disuse.' 

Following his extensive research activities in algebraic geometry and 
algebraic topology, Lefschetz entered a third scientific field with the 
publication of a monograph Lectures on differential equations [84] in 
1946. He had been led to renew his early engineering interests in mechanics 
by his associations with various scientists working on electronic and 
mechanical guidance systems during World War II. He was further 
stimulated by the serious Soviet activities in this direction, and during the 
subsequent decade he translated a number of Russian monographs and 
important articles into English. The influence of Lefschetz (with R. Courant 
and a very few others), in encouraging young mathematicians interested 
in the theory and applications of differential equations, and in making 
applied mathematics respectable and even important within the American 
Mathematical Society, can hardly be over-estimated. In a volume [3A] 
of the Journal of Mathematical Analysis and Applications 1965, dedi­
cated to Lefschetz, the editors R. Bellman and J. P. LaSalle state 

'The achievements of Solomon Lefschetz in the field of topology and in 
the development of American mathematics in general are well known. 
What is perhaps not so well known is that, in 1944, at the age of sixty, he 
began a new career in the field of differential equations and control theory. 
With his remarkable insight and intuition he saw the mathematical 
possibilities in these areas. With his indefatigable energy and enthusiasm 
he put together, first at Princeton University then at RIAS, and now at 
Brown University, outstanding research groups in these domains. He 
also pursued this research vigorously at the University of Mexico as a 
professor of mathematics after his retirement from Princeton. 

On behalf of his many pupils and colleagues, and many more friends, 
we would like to express our appreciation of his mathematical genius, 
intellectual courage, and broad humanity in dedicating this volume to 
him.' 

In Contributions to the theory of nonlinear oscillations ([88], [91], [106]), 
a set of volumes which he edited in the series of Princeton Annals Studies, 
Lefschetz sets out his two main interests in the field of dynamical systems : 



672 LAWRENCE MARKUS [July 

(a) the general theory of dissipative systems including the concept of 
structural stability, 

(b) the algorithmic approach to the resolution of singularities of 
critical points and bifurcating periodic orbits. 

The first of these two programs (a) is emphasized in the first volume of 
the Contributions in 1950 : 

'Nonlinear conservative oscillators have been investigated mainly in 
connection with celestial mechanics, and the information available for 
them is therefore rather extensive. It is known, for example, that the 
trajectories are extremals of a variational problem, so that one may bring 
to bear upon the problem Morse's technique for the discovery of closed 
geodesies on manifolds. Nothing of this sort is at hand for the dissipative 
type, making progress slow.' 

Lefschetz had been attracted to the theory of dissipative (as distinct from 
conservative) dynamical systems since these are of central importance in 
engineering problems where friction and resistance are significant. 
Also such dynamical systems, which can be interpreted mathematically as 
vector fields on the phase-space manifold, are amenable to the techniques 
of homotopy (a damped oscillator is qualitatively unchanged if the damping 
coefficient is slightly varied). In the concept of structurally stable systems, 
indicated in a note by Pontryagin and Andronov, Lefschetz found the 
direction he was seeking. 

On a differentiable manifold M, say compact and without boundary, 
consider the collection E of all C1-vector fields, and endow E with the 
C^-topology. Define two systems Sx and S2 of E to be qualitatively equiva­
lent in case there exists a homeomorphism of M onto itself throwing all 
the (unparametrized) solution curves of Sx onto those of S2. Then a 
dynamical system S is called structurally stable in case there is a neigh­
borhood N of S in E such that each Sx e N is qualitatively equivalent to S. 

It is clear that structurally stable differential systems should be of 
fundamental importance in engineering, biological, and social dynamics 
where the qualitative features must be predicted without absolutely 
accurate knowledge of the parameters of the physical phenomena. 

Lefschetz guided and encouraged students and young mathematicians 
on his projects to work on these qualitative problems of global analysis. 
In particular, his thesis student H. F. DeBaggis clarified the results of 
Pontryagin for the sphere S2 = M, and M. Peixoto proved that the struc­
turally stable systems on a compact surface M2 constitute an open dense 
subset of E. This reporter continued these studies on arbitrary manifolds 
Mn and proved that a structurally stable system must have isolated and 
elementary critical points and periodic orbits. Then S. Smale and his 
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associates obtained the brilliant result that every Morse-Smale system 
(defined by certain elementary structural conditions) is structurally stable 
on Mn. Thus the path illuminated by Lefschetz became one of the main 
routes of research for dynamical system theory during the two decades 
1950-1970, and his expectations were fully justified. 

The second problem (b) suggested by Lefschetz was attacked by him 
in a series of papers written at the University of Mexico. Also the single 
article [97] on differential equations that appears in his Selected papers 
is in this area. Here the emphasis is on a detailed, almost algorithmic, 
analysis of all possible structures for degenerate equilibrium points and 
periodic orbits of a dynamical system. The mathematical tools are those 
of the Weierstrass Preparation Theorem and Puiseux fractional power 
series. Clearly these methods stem from Lefschetz's early interests in the 
resolution of singularities in algebraic geometry. 

Lefschetz exercised an enormous, and beneficial, influence among the 
post-war generation of mathematicians in the fields of dynamical systems, 
nonlinear mechanics, and control theory. A glance through the list of 
authors in the Contributions (edited by Lefschetz), ([88], etc.) or the 
Proceedings of the symposium at Colorado Springs (organized by Lefschetz) 
[121], or the Symposium at Puerto Rico (dedicated to Lefschetz) [2A] 
gives a rather complete view of mathematicians in these fields in the United 
States (of America and of Mexico) and Western Europe. 

Even after the age of eighty Lefschetz continued to explore new direc­
tions in mathematics and his creative and organizational talents were 
turned towards nonlinear control theory. In the Symposium in Puerto 
Rico he states 

The most interesting and most recent application of Liapunov's theory 
is to the stability of nonlinear controls. There is, of course, an extensive 
theory of linear controls, stability included, whose origin goes back to 
Maxwell and Vishnegradskii about a century ago. With the advance of 
modern technology however nonlinear schemes and in particular non­
linear controls have appeared, calling inevitably for Liapunov's theory.' 

Lefschetz attacked technical engineering problems, not rarefied mathe­
matical generalities. For instance he made significant contributions to 
the Lurie stability problem, so named after the Soviet Academician. To 
understand the nature of this nonlinear control stability problem, let us 
first look at the linear case. 

Consider a real vector differential system 

dx/dt = Ax — bÇ 

where A is an n x n constant matrix and b is a constant column n-vector. 
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The state of the system is the n-vector x at each time t, and the control £ 
is a scalar. An important problem of linear control theory consists in 
choosing £ = ex, £ as a linear function of x using the constant row vector 
c, so that the resulting feedback system 

x = (A — bc)x 

is asymptotically stable towards the null solution, that is, each solution 
x(f)-> Oas t -» +oo. 

Let us now keep the above linear dynamics x = Ax — bÇ but use 
nonlinear feedback control laws £ = (p(cx) for a real Cx-function (p{a) 
satisfying 

/ • ± oo 

G<p(o) > 0 ford ^ 0, and <p(o)do = +oo. 
Jo 

This is the direct method of control, generalizing the linear control law 
<p(<x) = a, as described in the text [122] by Lefschetz. 

A more interesting engineering problem was introduced by Lurie, 
using the linear dynamics x = Ax — bt; and the "indirect or differential 
control" t, = cp(cx — p£). This control system is called absolutely stable 
in case every solution x(t) -• 0, £(t) -• 0 as t -+ + oo, for every admissible 
control law q>(o\ satisfying the above conditions. Thus, given A and b, the 
problem is to find all vectors c and scalars p > 0 such that the resulting 
system is absolutely stable. Lefschetz gave an explicit and useful stability 
criterion. In the special, but important, case where 

A = diag{Al5 A2,..., K} with kh < 0, 

Lefschetz's criterion [122] reduced to the simple form 

(moreover, various improvements are also offered there, for instance, 
the sum can omit all terms for which bhch ^ 0). 

Professor Lefschetz was an extraordinarily stimulating and fascinating 
personality. At the age of eighty he was still actively lecturing at three 
universities, Princeton, Mexico, and Brown, and was continuing his 
researches in algebraic geometry, topology, and dynamical systems. He 
had received highest honors from many governments, the National 
Medal of Science (United States), the Order of the Aztec Eagle (Mexico) 
and he held membership in the major scholarly societies, National Academy 
of Sciences (United States), 1'Academie des Sciences de Paris, Royal 
Society of London, among others. 

He was, of course, a brilliant linguist speaking and writing frequently 
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in Russian, French, English, and Spanish (he once remarked that he 
considered all European tongues to be dialects of a single language). 
But he would sometimes surprise the company by conversing in Persian, 
or some other distant language. It was not unusual for him to present a 
Symposium address in English and then repeat the lecture or its abstract 
immediately in Russian or Spanish to the delight of the audience. 

His instantaneous translations of other lectures could be amusing and 
startling. At a Symposium at Colorado Springs Lefschetz was asked to 
translate a steady half-hour torrent of Russian. He did so in one sentence : 

He says, "you try to get the final formula from the first one." 

This direct approach was always his philosophy, and in intellectual 
problems and in human issues Solomon Lefschetz was eminently successful 
at getting the final formula. 
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