CLASS NUMBERS OF DEFINITE QUATERNARY FORMS WITH NONSQUARE DISCRIMINANT

BY PAUL PONOMAREV¹

Communicated by Nathan Jacobson, November 2, 1972

1. Introduction. Let V be a definite quadratic space of dimension four over the field of rational numbers Q. If the discriminant $\Delta(V)$ is square, then the number of classes of maximal integral lattices can be computed by means of the formulas given by the author in [6] and [7]. The purpose of this note is to announce analogous class number formulas for the case where $\Delta(V)$ is not square, V_p is isotropic for each finite prime p, and the norm of the fundamental unit of $K = Q((\Delta(V))^{1/2})$ is -1.

Let \mathfrak{M} denote the genus of maximal integral lattices of V, \mathfrak{I} the idealcomplex containing \mathfrak{M} . Let Δ denote the discriminant of \mathfrak{M} . Then \mathfrak{I} can also be described as the set of all maximal lattices having reduced determinant Δ [1, p. 87]. The formulas we present here are for the number of (proper) similitude classes in \Im . We denote this class number by H. The number of classes in \mathfrak{M} will be denoted by H_0 . The ideal complex \mathfrak{I} decomposes into g^+ similitude genera, where g^+ = the number of strict genera of K [5, p. 338]. The similitude genus containing \mathfrak{M} has H_0 similitude classes. It follows that $H_0 \leq H$. Equality holds if and only if K has prime discriminant, since $g^+ = 1$ in that case (cf. Corollary below).

2. Preliminaries. Let C_{V}^{+} denote the second Clifford algebra of V. Then $C_V^+ = \mathfrak{A}_K = \mathfrak{A} \otimes_{\mathbf{0}} K$, where \mathfrak{A} is a definite quaternion algebra over Q. Let $\alpha \mapsto \alpha^*$ be the canonical involution of \mathfrak{A}_K and $N : \mathfrak{A}_K \to K$ the (reduced) norm mapping. The conjugation $x \mapsto \overline{x}$ of K can be extended to a Qautomorphism $\alpha \mapsto \overline{\alpha}$ of \mathfrak{A}_K so that \mathfrak{A} is its ring of fixed elements. Let W be the set of all α in \mathfrak{A}_{K} such that $\alpha = \overline{\alpha}^{*}$. Then W is a four-dimensional Qsubspace of \mathfrak{A}_{K} and the restriction of N to W takes values in Q. In this way W may be regarded as a quadratic space over Q. We assume, without loss of generality, that V is positive definite. Then V is isometric to W. In particular, the condition that V_p is isotropic for every finite prime p is equivalent to the condition that \mathfrak{A} splits at every finite prime which splits in K. From this it follows, by a straightforward computation of local discriminants, that

(1)
$$\Delta = \Delta_{\mathbf{K}} (p_1 \cdots p_e)^2,$$

where Δ_K is the discriminant of K and p_1, \ldots, p_e are all the nonsplit finite

Copyright © American Mathematical Society 1973

AMS (MOS) subject classifications (1970). Primary 10C05, 12A80; Secondary 12A85. ¹ Partially supported by NSF grant GP-25320.

primes of \mathfrak{A} which remain prime in K. We put $\delta = p_1 \cdots p_e$.

3. Statement of results. Let *D* denote the square-free kernel of Δ_K . For any positive integer *m* let $\lambda(m)$ denote the number of primes dividing *m*; let h(-m) denote the class number of the imaginary quadratic extension $Q((-m)^{1/2})$. Denote the Minkowski-Siegel weight of \mathfrak{I} by $M(\mathfrak{I})$.

THEOREM 1. Suppose that V satisfies the conditions stated in the Introduction. If D is odd and $\Delta > 5$, then

(2)
$$H = M(\Im) + c_1 h(-D) + c_3 h(-3D) + \sum_{n|\delta,d|D} 2^{-\lambda(n) - \sigma(nd)} h(-nd) h(-nD/d),$$

where nd > 3, $d < D^{1/2}$ and

$$c_{1} = \frac{1}{8} \quad if \ 2 \not\mid \delta,$$

$$= \frac{3}{16} \quad if \ 2 \mid \delta,$$

$$c_{3} = \frac{1}{6} \quad if \ 3 \not\mid \delta,$$

$$= \frac{5}{6} \quad if \ 3 \mid \delta, D \equiv 1 \pmod{8},$$

$$= \frac{1}{3} \quad if \ 3 \mid \delta, D \equiv 5 \pmod{8},$$

and if $D \equiv 1 \pmod{8}$,

$$\sigma(m) = -2 \quad if \ m \equiv 3 \pmod{8},$$
$$= 0 \qquad if \ m \equiv 7 \pmod{8},$$
$$= 2 \qquad if \ m \equiv 1 \pmod{4},$$

while if $D \equiv 5 \pmod{8}$,

$$\sigma(m) = 0 \quad if \ m \equiv 3 \pmod{4},$$

= 2 $if \ m \equiv 2 \pmod{4},$
= 2 $if \ m \equiv 1 \pmod{4}, 2 \not\mid \delta,$
= 3 $if \ m \equiv 1 \pmod{4}, 2 \not\mid \delta.$

Furthermore,

(3)
$$M(\mathfrak{I}) = \frac{\prod_{p|\delta} (p^2 + 1)}{3 \cdot 2^{e+2} (\binom{D}{2} - 4)} \left[\sum_{m=1}^{(D-1)/2} (\frac{D}{m})m \right],$$

where $\left(\frac{D}{m}\right)$ is the Kronecker symbol.

REMARK. Since the fundamental unit of K has norm equal to -1, every

prime divisor of D is congruent to 1 (mod 4). Hence D itself must be congruent to 1 (mod 4).

COROLLARY. Suppose that $\Delta = p$, a prime greater than 5. Then

(4)
$$H_0 = H = \frac{\sum_{m=1}^{(p-1)/2} {p \choose m} m}{12((\frac{p}{2}) - 4)} + \frac{h(-p)}{8} + \frac{h(-3p)}{6}.$$

REMARKS. 1. If $\Delta = p$, a prime, then (1) implies $\Delta_K = p$. In this case it is well known that the norm of the fundamental unit of K is -1.

2. Tamagawa has shown, under the assumption of the Corollary, that $H = h(\mathfrak{A}_K)/h(K)$, where $h(\mathfrak{A}_K)$ is the ideal class number of \mathfrak{A}_K and h(K) is the ideal class number of K. Combining this with Peters' formula for $h(\mathfrak{A}_K)$ [5, p. 363], we obtain another proof of (4).

3. In the classical terminology, (4) is a formula for the number of classes of integral quaternary forms of discriminant p.

THEOREM 2. Suppose that V satisfies the conditions stated in the Introduction. If D is even, then

(5)
$$H = M(\mathfrak{J}) + \frac{5}{8}h(-D) + c_2h(-D/2) + c_3h(-3D) + \sum_{n|\delta,d|D} c_{nd}2^{-\lambda(n)-\sigma(nd)}h(-nd)h(-nD/d),$$

where nd > 3, $d < D^{1/2}$ and

$$c_2 = 0 \quad \text{if } D = 2,$$

$$= \frac{3}{4} \quad \text{if } D \neq 2,$$

$$c_3 = \frac{1}{6} \quad \text{if } 3 \not \lambda \delta,$$

$$= \frac{7}{12} \quad \text{if } 3 | \delta,$$

and for m > 3,

$$c_m = 5$$
 if $m = 3 \pmod{8}$,
= 1 if $m = 7 \pmod{8}$,
= 3 if $m = 1 \pmod{4}$,
 $\sigma(m) = 1$ if $m = 3 \pmod{8}$,
= 0 if $m = 7 \pmod{8}$,
= 2 if $m = 1 \pmod{4}$.

Furthermore,

CLASS NUMBERS OF DEFINITE QUATERNARY FORMS

(6)

$$M(\mathfrak{I}) = \frac{\prod_{p \mid \delta} (p^2 + 1)}{3 \cdot 2^{e+3}} \left[\sum_{m=1}^{D/2} \left(\frac{4D}{m} \right) (D + ((-1)^{(m-1)/2} - 1)m) \right] \quad \text{if } D \neq 2,$$

$$= \prod_{p \mid \delta} \frac{(p^2 + 1)}{3 \cdot 2^{e+3}} \text{ if } D = 2.$$

4. Outline of the proof. If V is regarded as the subspace of all elements in \mathfrak{A}_K fixed by $\alpha \mapsto \overline{\alpha}^*$, then the proper similitudes of V are all the mappings of the form $\mu \mapsto r\alpha\mu\overline{\alpha}^*$, where r, α are invertible elements of Q, \mathfrak{A}_K , respectively. Using this description of the group of proper similitudes, we deduce that $H = t_{\delta}$, the type number of all orders of level δ in \mathfrak{A}_K [2, p. 130]. Denote the multiplicative groups of K, \mathfrak{A}_K by $K^{\times}, \mathfrak{A}_K^{\times}$, respectively, and their ideal groups by $J_K, J_{\mathfrak{A}_K}$, respectively. Put $G = \mathfrak{A}_K^{\times}/K^{\times}, G_A$ $= J_{\mathfrak{A}_K}/J_K$. Then G_A acts transitively on the collection of orders of level δ by conjugation. Fix an order Ω of \mathfrak{A}_K of level δ and denote its isotropy group under the action of G_A by $G_{\overline{\Omega}}$. Then we have

$$t_{\delta} = \operatorname{card}(G_{\widetilde{\Omega}} \setminus G_{A}/G).$$

Proceeding as in [6], we regard t_{δ} as the trace of the convolution operator $f \mapsto F_{\tilde{\Omega}} * f$ on $L_2(G_{\tilde{\Omega}} \setminus G_A/G)$, where $F_{\tilde{\Omega}}$ is the characteristic function of $G_{\tilde{\Omega}}$. We fix a representative s from each conjugacy class of G and denote the centralizer of s in G by G(s). Applying the Selberg trace formula, we obtain

(7)
$$H = t_{\delta} = \sum_{s} \int_{G_{\mathbf{A}}/G(s)} \psi_{s}(g') \, dg',$$

where $\psi_s(g') = F_{\tilde{\Omega}}(gsg^{-1})$ for g in G_A .

NOTATION. If α is an element of \mathfrak{A}_K and x is an algebraic number, then $\alpha \sim x$ will mean that α and x have the same minimal polynomial over K.

Making essential use of the conditions stated in the Introduction, we can show that a complete set of representatives for the conjugacy classes with nonzero contributions to (7) is given by $\{\alpha \mod K^{\times}\}$, where

(i)
$$\alpha \sim 1$$
;
(ii) $\alpha \sim \sqrt{-1}$, ζ , where ζ is a primitive cube root of unity;
(iii) $\alpha \sim 1 + \sqrt{-1}$, $\sqrt{-2}$ if $2|\Delta$;
(iv) $\alpha \sim \sqrt{-3}$, $\zeta\sqrt{-3}$ if $3|\Delta$;
(v) $\alpha \sim \sqrt{-m}$ if $m|\delta D$.

The contribution of (i) is $M(\mathfrak{I})$, which is evaluated by means of Leopoldt's formula for $L(2, \chi)$, where $\chi(m) = (\Delta_K/m)$ [4, p. 135]. The resulting expression is simplified as in [3, §6] to yield (3) and (6). The contribution of each of the remaining α in (ii)–(v) is evaluated and found to be a simple rational multiple of the relative class number of $K(\alpha)$ over K. The classical formula of Bachmann for the class number of a bicyclic biquadratic imaginary

1973]

extension of Q is then invoked to yield the final formulas.

REFERENCES

1. M. Eichler, Quadratische Formen und orthogonale Gruppen, Die Grundlehren der math. Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungs-

gebiete, Band 63, Springer-Verlag, Berlin, 1952. MR 14, 540.
 2. _____, Zur Zahlentheorie der Quaternionen-Algebren, J. Reine Angew. Math. 195 (1955), 127-151. MR 18, 297.

3. O. Körner, Die Masse der Geschlechter quadratischer Formen vom Range ≤ 3 in quadratischen Zahlkörpern, Math. Ann. **193** (1971), 279–314.

4. H.-W. Leopoldt, Eine Verallgemeinerung der Bernoullischen Zahlen, Abh. Math. Sem. Univ. Hamburg 22 (1958), 131-140. MR 19, 1161.
5. M. Peters, Ternäre und quaternäre quadratische Formen und Quaternionenalgebren, Acta Arith. 15 (1968/1969), 329-365. MR 40 #2605.

6. P. Ponomarev, Class numbers of positive definite quaternary forms, Bull. Amer. Math. Soc. 76 (1970), 646-649. MR 41 # 3396.

Theory (to appear).

DEPARTMENT OF MATHEMATICS, THE JOHNS HOPKINS UNIVERSITY, BALTIMORE, MARYLAND 21218