CLASS NUMBERS OF DEFINITE QUATERNARY FORMS WITH NONSQUARE DISCRIMINANT

BY PAUL PONOMAREV ${ }^{1}$
Communicated by Nathan Jacobson, November 2, 1972

1. Introduction. Let V be a definite quadratic space of dimension four over the field of rational numbers Q. If the discriminant $\Delta(V)$ is square, then the number of classes of maximal integral lattices can be computed by means of the formulas given by the author in [6] and [7]. The purpose of this note is to announce analogous class number formulas for the case where $\Delta(V)$ is not square, V_{p} is isotropic for each finite prime p, and the norm of the fundamental unit of $K=\boldsymbol{Q}\left((\Delta(V))^{1 / 2}\right)$ is -1 .

Let \mathfrak{M} denote the genus of maximal integral lattices of V, \mathfrak{J} the idealcomplex containing \mathfrak{M}. Let Δ denote the discriminant of \mathfrak{M}. Then \mathfrak{I} can also be described as the set of all maximal lattices having reduced determinant Δ [1, p. 87]. The formulas we present here are for the number of (proper) similitude classes in \mathfrak{I}. We denote this class number by H. The number of classes in \mathfrak{M} will be denoted by H_{0}. The idealcomplex \mathfrak{I} decomposes into g^{+}similitude genera, where $g^{+}=$the number of strict genera of $K[5, \mathrm{p} .338]$. The similitude genus containing \mathfrak{M} has H_{0} similitude classes. It follows that $H_{0} \leqq H$. Equality holds if and only if K has prime discriminant, since $g^{+}=1$ in that case (cf. Corollary below).
2. Preliminaries. Let C_{V}^{+}denote the second Clifford algebra of V. Then $C_{V}^{+}=\mathfrak{A}_{K}=\mathfrak{A} \otimes_{\boldsymbol{Q}} K$, where $\mathfrak{\mathscr { A }}$ is a definite quaternion algebra over \boldsymbol{Q}. Let $\alpha \mapsto \alpha^{*}$ be the canonical involution of \mathfrak{A}_{K} and $N: \mathfrak{A}_{K} \rightarrow K$ the (reduced) norm mapping. The conjugation $x \mapsto \bar{x}$ of K can be extended to a \boldsymbol{Q} automorphism $\alpha \mapsto \bar{\alpha}$ of \mathfrak{U}_{K} so that \mathfrak{A} is its ring of fixed elements. Let W be the set of all α in $\mathfrak{A}_{\boldsymbol{K}}$ such that $\alpha=\bar{\alpha}^{*}$. Then W is a four-dimensional \boldsymbol{Q} subspace of \mathfrak{A}_{K} and the restriction of N to W takes values in \boldsymbol{Q}. In this way W may be regarded as a quadratic space over \boldsymbol{Q}. We assume, without loss of generality, that V is positive definite. Then V is isometric to W. In particular, the condition that V_{p} is isotropic for every finite prime p is equivalent to the condition that \mathfrak{A} splits at every finite prime which splits in K. From this it follows, by a straightforward computation of local discriminants, that

$$
\begin{equation*}
\Delta=\Delta_{K}\left(p_{1} \cdots p_{e}\right)^{2} \tag{1}
\end{equation*}
$$

where Δ_{K} is the discriminant of K and p_{1}, \ldots, p_{e} are all the nonsplit finite

[^0]primes of \mathfrak{A} which remain prime in K. We put $\delta=p_{1} \cdots p_{e}$.
3. Statement of results. Let D denote the square-free kernel of Δ_{K}. For any positive integer m let $\lambda(m)$ denote the number of primes dividing m; let $h(-m)$ denote the class number of the imaginary quadratic extension $\boldsymbol{Q}\left((-m)^{\mathbf{1 / 2}}\right)$. Denote the Minkowski-Siegel weight of \mathfrak{I} by $\boldsymbol{M}(\mathfrak{J})$.

Theorem 1. Suppose that V satisfies the conditions stated in the Introduction. If D is odd and $\Delta>5$, then

$$
\begin{align*}
H= & M(\mathfrak{I})+c_{1} h(-D)+c_{3} h(-3 D) \\
& +\sum_{n|\delta, d| D} 2^{-\lambda(n)-\sigma(n d)} h(-n d) h(-n D / d) \tag{2}
\end{align*}
$$

where $n d>3, d<D^{1 / 2}$ and

$$
\begin{aligned}
c_{1} & =\frac{1}{8} \quad \text { if } 2 \nmid \delta, \\
& =\frac{3}{16} \quad \text { if } 2 \mid \delta, \\
c_{3} & =\frac{1}{6} \quad \text { if } 3 \nmid \delta, \\
& =\frac{5}{6} \quad \text { if } 3 \mid \delta, D \equiv 1(\bmod 8), \\
& =\frac{1}{3} \quad \text { if } 3 \mid \delta, D \equiv 5(\bmod 8),
\end{aligned}
$$

and if $D \equiv 1(\bmod 8)$,

$$
\begin{aligned}
\sigma(m) & =-2 & & \text { if } m \equiv 3(\bmod 8) \\
& =0 & & \text { if } m \equiv 7(\bmod 8) \\
& =2 & & \text { if } m \equiv 1(\bmod 4)
\end{aligned}
$$

while if $D \equiv 5(\bmod 8)$,

$$
\begin{aligned}
\sigma(m) & =0 \quad \text { if } m \equiv 3(\bmod 4), \\
& =2 \quad \text { if } m \equiv 2(\bmod 4), \\
& =2 \quad \text { if } m \equiv 1(\bmod 4), 2 \nmid \delta, \\
& =3 \quad \text { if } m \equiv 1(\bmod 4), 2 \mid \delta .
\end{aligned}
$$

Furthermore,

$$
\begin{equation*}
M(\mathfrak{I})=\frac{\prod_{p \mid \delta}\left(p^{2}+1\right)}{3 \cdot 2^{e+2}\left(\left(\frac{D}{2}\right)-4\right)}\left[\sum_{m=1}^{(D-1) / 2}\left(\frac{D}{m}\right) m\right] \tag{3}
\end{equation*}
$$

where $\left(\frac{D}{m}\right)$ is the Kronecker symbol.
Remark. Since the fundamental unit of K has norm equal to -1 , every
prime divisor of D is congruent to $1(\bmod 4)$. Hence D itself must be congruent to $1(\bmod 4)$.

Corollary. Suppose that $\Delta=p$, a prime greater than 5. Then

$$
\begin{equation*}
H_{0}=H=\frac{\sum_{m=1}^{(p-1) / 2}\left(\frac{p}{m}\right) m}{12\left(\left(\frac{p}{2}\right)-4\right)}+\frac{h(-p)}{8}+\frac{h(-3 p)}{6} \tag{4}
\end{equation*}
$$

Remarks. 1. If $\Delta=p$, a prime, then (1) implies $\Delta_{K}=p$. In this case it is well known that the norm of the fundamental unit of K is -1 .
2. Tamagawa has shown, under the assumption of the Corollary, that $H=h\left(\mathfrak{A}_{K}\right) / h(K)$, where $h\left(\mathfrak{A}_{K}\right)$ is the ideal class number of \mathfrak{U}_{K} and $h(K)$ is the ideal class number of K. Combining this with Peters' formula for $h\left(\mathfrak{H}_{K}\right)$ [5, p. 363], we obtain another proof of (4).
3. In the classical terminology, (4) is a formula for the number of classes of integral quaternary forms of discriminant p.

Theorem 2. Suppose that V satisfies the conditions stated in the Introduction. If D is even, then

$$
\begin{align*}
H= & M(\mathfrak{J})+\frac{5}{8} h(-D)+c_{2} h(-D / 2)+c_{3} h(-3 D) \\
& +\sum_{n|\delta, d| D} c_{n d} 2^{-\lambda(n)-\sigma(n d)} h(-n d) h(-n D / d), \tag{5}
\end{align*}
$$

where $n d>3, d<D^{1 / 2}$ and

$$
\begin{aligned}
c_{2} & =0 \quad \text { if } D=2, \\
& =\frac{3}{4} \quad \text { if } D \neq 2, \\
c_{3} & =\frac{1}{6} \quad \text { if } 3 \nmid \delta, \\
& =\frac{7}{12} \quad \text { if } 3 \mid \delta,
\end{aligned}
$$

and for $m>3$,

$$
\begin{aligned}
c_{m} & =5 \\
& =1 \\
& \text { if } m=3(\operatorname{lod} 8)=7(\bmod 8), \\
& =3 \quad \text { if } m=1(\bmod 4), \\
\sigma(m) & =1 \quad \text { if } m=3(\bmod 8), \\
& =0 \quad \text { if } m=7(\bmod 8), \\
& =2 \quad \text { if } m=1(\bmod 4) .
\end{aligned}
$$

Furthermore,

$$
\begin{align*}
M(\mathfrak{I}) & =\frac{\prod_{p \mid \delta}\left(p^{2}+1\right)}{3 \cdot 2^{e+3}}\left[\sum_{m=1}^{D / 2}\left(\frac{4 D}{m}\right)\left(D+\left((-1)^{(m-1) / 2}-1\right) m\right)\right] \quad \text { if } D \neq 2, \\
& =\prod_{p \mid \delta} \frac{\left(p^{2}+1\right)}{3 \cdot 2^{e+3}} \text { if } D=2 \tag{6}
\end{align*}
$$

4. Outline of the proof. If V is regarded as the subspace of all elements in \mathfrak{A}_{K} fixed by $\alpha \mapsto \bar{\alpha}^{*}$, then the proper similitudes of V are all the mappings of the form $\mu \mapsto r \alpha \mu \bar{\alpha}^{*}$, where r, α are invertible elements of $\boldsymbol{Q}, \mathfrak{A}_{K}$, respectively. Using this description of the group of proper similitudes, we deduce that $H=t_{\delta}$, the type number of all orders of level δ in \mathfrak{A}_{K} [$\mathbf{2}$, p. 130]. Denote the multiplicative groups of K, \mathfrak{U}_{K} by $K^{\times}, \mathfrak{A}_{K}^{\times}$, respectively, and their ideal groups by $J_{K}, J_{\mathfrak{Q}_{K}}$, respectively. Put $G=\mathfrak{A}_{K}^{\times} / K^{\times}, G_{\boldsymbol{A}}$ $=J_{\mathfrak{A}_{\mathbf{K}}} / J_{\boldsymbol{K}}$. Then $G_{\boldsymbol{A}}$ acts transitively on the collection of orders of level δ by conjugation. Fix an order Ω of \mathfrak{A}_{K} of level δ and denote its isotropy group under the action of G_{A} by $G_{\tilde{\Omega}}$. Then we have

$$
t_{\delta}=\operatorname{card}\left(G_{\tilde{\Omega}} \backslash G_{\boldsymbol{A}} / G\right)
$$

Proceeding as in [6], we regard t_{δ} as the trace of the convolution operator $f \mapsto F_{\tilde{\Omega}} * f$ on $L_{2}\left(G_{\tilde{\Omega}} \backslash G_{\Lambda} / G\right)$, where $F_{\tilde{\Omega}}$ is the characteristic function of $G_{\tilde{\Omega}}$. We fix a representative s from each conjugacy class of G and denote the centralizer of s in G by $G(s)$. Applying the Selberg trace formula, we obtain

$$
\begin{equation*}
H=t_{\delta}=\sum_{s} \int_{G_{\mathbf{A}} / G(s)} \psi_{s}\left(g^{\prime}\right) d g^{\prime} \tag{7}
\end{equation*}
$$

where $\psi_{s}\left(g^{\prime}\right)=F_{\tilde{\Omega}}\left(g s g^{-1}\right)$ for g in G_{A}.
Notation. If α is an element of \mathfrak{A}_{K} and x is an algebraic number, then $\alpha \sim x$ will mean that α and x have the same minimal polynomial over K.

Making essential use of the conditions stated in the Introduction, we can show that a complete set of representatives for the conjugacy classes with nonzero contributions to (7) is given by $\left\{\alpha \bmod K^{\times}\right\}$, where
(i) $\alpha \sim 1$;
(ii) $\alpha \sim \sqrt{-1}, \zeta$, where ζ is a primitive cube root of unity;
(iii) $\alpha \sim 1+\sqrt{-1}, \sqrt{-2}$ if $2 \mid \Delta$;
(iv) $\alpha \sim \sqrt{-3}, \zeta \sqrt{-3}$ if $3 \mid \Delta$;
(v) $\alpha \sim \sqrt{-m}$ if $m \mid \delta D$.

The contribution of (i) is $M(\mathfrak{J})$, which is evaluated by means of Leopoldt's formula for $L(2, \chi)$, where $\chi(m)=\left(\Delta_{K} / m\right)$ [4, p. 135]. The resulting expression is simplified as in $[3, \S 6]$ to yield (3) and (6). The contribution of each of the remaining α in (ii)-(v) is evaluated and found to be a simple rational multiple of the relative class number of $K(\alpha)$ over K. The classical formula of Bachmann for the class number of a bicyclic biquadratic imaginary

extension of \boldsymbol{Q} is then invoked to yield the final formulas.

References

1. M. Eichler, Quadratische Formen und orthogonale Gruppen, Die Grundlehren der math. Wissenschatten in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band 63, Springer-Verlag, Berlin, 1952. MR 14, 540.
2. -, Zur Zahlentheorie der Quaternionen-Algebren, J. Reine Angew. Math. 195 (1955), 127-151. MR 18, 297.
3. O. Körner, Die Masse der Geschlechter quadratischer Formen vom Range $\leqq 3$ in quadratischen Zahlkörpern, Math. Ann. 193 (1971), 279-314.
4. H.-W. Leopoldt, Eine Verallgemeinerung der Bernoullischen Zahlen, Abh. Math. Sem. Univ. Hamburg 22 (1958), 131-140. MR 19, 1161.
5. M. Peters, Ternäre und quaternäre quadratische Formen und Quaternionenalgebren, Acta Arith. 15 (1968/1969), 329-365. MR 40 \# 2605.
6. P. Ponomarev, Class numbers of positive definite quaternary forms, Bull. Amer. Math. Soc. 76 (1970), 646-649. MR 41 \# 3396.
7. -, Class numbers of definite quaternary forms with square discriminant, J. Number Theory (to appear).

Department of Mathematics, The Johns Hopkins University, Baltimore, Maryland 21218

[^0]: AMS (MOS) subject classifications (1970). Primary 10C05, 12A80; Secondary 12A85.
 ${ }^{1}$ Partially supported by NSF grant GP-25320.

