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Let X be a real normed linear space and ƒ a functional on X. Recall that 
by the first one-sided variation o f / a t x in the direction h we mean 

j+{x)(h) = hm 

and by the second one-sided variation of ƒ at x in the directions hx and h2 

we mean 

f+(x)(huh2) = hm 
f->0+ t 

Let 

/(x) = il|x||2 and (x,y)=fi(x)(y). 

PROPOSITION 1. Every normed linear space resembles an inner product 
space in the sense that 

(i) (x, y) is well defined ; 
(ii) (x, x) ^ 0 with equality if and only if x = 0 ; 
(iii) llxlHtex)1'2. 

Moreover, if X is an inner product space with inner product [•, •], then 

(•,•) = [•,•]. 

PROPOSITION 2. The following are equivalent : 
(i) X is an inner product space ; 

(ii) (x, y) is symmetric ; 
(iii) (x, y) is linear in the first variable ; 
(iv) f+(0)(x9y) is linear in the first variable. 

The proofs of these and related results will appear elsewhere. 
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