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1. Introduction. Systems of ordinary differential equations with quad­
ratic coupling have been used to model growth processes which occur in a 
number of otherwise unrelated physical applications (cf. [1], [2], [3]). 
Explicit solutions for the initial value problem have been obtained in 
certain cases when the coupling coefficients have been appropriately 
specialized (cf. [2], [3], [4]). This paper will consider a somewhat more 
general class of quadratically coupled systems for which the initial value 
problem can be reduced to that of a linear system. 

2. Conditions for the reduction. The most general system of quadratically 
coupled differential equations over the complex field can be expressed 
in the form 

(1) x' + X rjkxV + X A}** = *>'> i = 1,. . . , n. 

If the coefficients in (1) are constant and satisfy the relations 
n n 

(2a) 2 J *jk*im = L J *lj*mk9 
J = l 7 = 1 

and either 

(2b) A) = t V 

or 

(2c) A] = t nA 
k=l 

where the ak are the components of some constant vector a, then the 
solution to the initial value problem for (1) can be reduced to that for a 
linear system with constant coefficients. 

The requirement (2a) is the necessary and sufficient condition that the 
ri

jk be the structure constants for an n dimensional algebra (cf. [5]). In 
particular, the n matrices Tk, k = 1,. . . , n, whose elements are r*k, them-
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selves, form a basis for such an algebra. The reduction of (1) to a linear 
system can be generalized to the case of nonconstant coefficients if, in 
addition to the condition (2), the condition that the Tk satisfy the dif­
ferential equations 

(3) fk + Grk = 0, fc=l,...,w, 

for some matrix G, is also required. 

THEOREM 1. If a multiplication law 

def C n ~\ 

(4) {z = xy} = Y = £ rjkxY, i = l,...,« I 

is defined for vectors x with elements xl over the complex field, the resulting 
algebra of vectors x will be associative iff {2d) is satisfied. 

COROLLARY. The algebra defined by (4) will be commutative iff Tl
jk = 

n,.,i,7,/c = l,...,n. 

3. Reduction to a linear system. If (1) is multiplied through by Tl
mi and 

summed over i, and (2) is taken into account, the result will have the form 

(5a) X + X2 + AX = B 

or 

(5b) X + X2 + XA = B 

where X is the matrix whose elements are 

(6) X) = t T)ky*, 
fc=l 

A is the matrix whose elements are A), and B is the matrix whose elements 
are 

B)= t ry* 
fc=i 

The matrix differential equation (5) has the form of a Riccati equation 
and therefore can be reduced to linear form by means of the substitution 
(cf. [6]): 

X^WW'1 or X^W-^W. 

The initial value problem for equation (5) is then reduced to that for a 
linear second order differential equation for the nonsingular matrix W\ 

W +AW= BW or W + WA= WB. 
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If initial values for (5) are chosen consistent with conditions (2), it can 
be shown with the aid of standard existence theorems that the solution 
of the initial value problem for (5) will necessarily have the form (6). 
In general, the solution of (6) can be expressed in the form 

(7) xl = yl + a\ Ï = 1 , . . . , n, 

where yl is any particular solution of (6) and a1 satisfies 

(8) t r > k = = 0 > ij= l , . . . , n . 
fc=i 

Then, if the expression for xl given by (7) is substituted into (1), with the 
aid of (8) a linear differential equation for a1 is obtained. The appropriate 
initial condition for this equation depends on the choice of yl initially. 
The differential equation for a1 in general will not have constant coeffi­
cients unless the matrices Tk whose elements are r}k form a linearly inde­
pendent set, in which case the d are identically zero. Thus, by analogy 
with linear systems, it may be concluded that a kind of resonance pheno­
menon occurs when the Fk are linearly dependent.1 

4. Some useful relations. The following (Theorem 2) may help to simplify 
the task of determining whether the condition (2a) holds in a given appli­
cation. Theorem 3 demonstrates that the linearization procedure leads 
to a system which is completely uncoupled in certain cases. 

Since Tl
jk in (1) is determined only up to a three index symbol Sl

jk which 
is symmetric in its lower indices, the possibility exists that some antisym­
metric symbol A)k can be added to satisfy the condition (2a). It is, therefore, 
useful to obtain a simple restriction on the antisymmetric part of Y)k, 
which, according to the Corollary to Theorem 1, cannot be symmetric 
in its lower indices unless the algebra defined by the multiplication law 
(4) is commutative. 

THEOREM 2. A necessary condition for Tl
jk to satisfy (2a) is that 

where 

S)k = \{T)k + PkJ) and 4 » = *(rj» - fly). 

THEOREM 3. If (2a) is satisfied, the T)k are symmetric in their lower 
indices, and the matrices Tk, whose elements are T)k, are all diagonalizable, 
then the Tl

jk will have the canonical form 

1 This paragraph resulted directly from a question posed by the referee. 
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T)k= ^HlGjGl, i,j,k=l,...,n. 
1=1 

The G) are elements of some matrix G and the H) are elements of a matrix H 
such that the product GH satisfies the relation GHGk — Gk, k = 1 , . . . , n, 
where the Gk are matrices whose elements Gjk are given by G)k = GjGl. 
In particular, if G is nonsingular H = G"1. 

When Theorem 3 holds along with the remaining condition (2b) or 
(2c) the linearization procedure leads to an uncoupled system of n inde­
pendent scalar Riccati equations and, therefore, to n independent, linear 
scalar, ordinary differential equations. 

The author wishes to express his gratitude to the referee for his careful 
reading of this paper, for his interesting comments, one of which led to a 
significant improvement in the results, and for supplying references [7] 
and [8]. The referee made the observation that L. Marcus in [7] associated 
a generally nonassociative algebra with a quadratically coupled system 
of differential equations that is completely equivalent to the algebra 
defined in this paper through the multiplication law (4). J. J. Levin and 
S. S. Shatz, with the aid of results given by Marcus, considered a somewhat 
different relationship between matrix Riccati equations and quadratically 
coupled equations than is done in this paper. 

The referee also observed the following apparent paradox: If T is a 
constant m x n matrix, then the matrix Riccati equation 

(9) dX/dt = XTX, 

where X is n x m, is a special case of 

(10) *," = £<i},k*'*\ 
j,k 

Levin and Shatz show that the Markus algebra associated with (9) is 
isomorphic to the algebra of all n x m matrices with multiplication 
defined by 

(11) AB = ^(ATB + BY A). 

It is important to note that (11), even with n = m, is in general not 
associative. Since (2a) (see Theorem 1) is satisfied if and only if the Markus 
algebra for (11) is associative, it follows that the procedure given in this 
paper transforming certain equations of type (1) into matrix Riccati 
equations fails in general for equations of type (9). This is a curious and 
interesting fact. 
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