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1. Let J-f be a separable infinite-dimensional Hilbert space and let 
i f (Jf ) denote the space of all bounded linear operators on Jf. In the 
study of operators on Hilbert space and its many applications, parti­
cularly in mathematical physics, certain ideals of the ring i f (J^) are of 
fundamental importance. These are the ones called norm ideals by Schatten 
[11] and s.n. ideals (symmetric norm ideals) by Gohberg and Krein [5]. 
Examples of such ideals are the space K{#C) of compact operators, the 
space N(jf) of nuclear (or trace-class) operators, the Hilbert-Schmidt 
operators and their natural extensions, the classes Cp (1 ^ p < + oo) [3], 
[9], and the rather recently introduced classes C& and Cw of Gohberg and 
Krein [5], [8]. The last are already of considerable importance, arising 
naturally in the study of the abstract triangular integral and in questions 
concerning the completeness of the root vectors of an operator [1], [6], 
[7], [8], yet have barely been studied in any depth. In fact, though all of 
the ideals mentioned above are separable Banach spaces, almost no work 
concerning their subspace structure has been done (one exception is the 
fine study of the ideals Cp by McCarthy [9]). 

The purpose of this paper is to begin a study of the subspaces of separ­
able norm ideals (by subspace we always mean a closed linear sub-
manifold). In particular, we study the spaces K(jf), N(jf), C&, and Cw 

from this standpoint. We refer the reader to [5] for the necessary back­
ground information and notation concerning s.n. ideals. Details of the 
proofs will appear elsewhere. 

2. The ideals K(J^) and C&. Though the ideals K(JV) and C& are dis­
similar in many respects, their subspace structures are very much alike. 

THEOREM 1. Let E be a closed subspace of K(J^). Then either E is iso­
morphic to J f or it contains a subspace isomorphic to c0. If E is isomorphic 
to Jf, then it is complemented in i f (Jf). 

The idea of the proof of Theorem 1 is as follows: K(jf) = Jf * ® a j f 
for a uniform crossnorm a (in fact a = A, the "least" crossnorm [11]). 
Moreover, if (0£) is an orthonormal basis for Jf, then (</>, ® (j)j) is a basis 
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for J f * (g)a J f [4]. If E is nonreflexive then it cannot be isomorphically 
embedded in the finite direct sum of Hubert spaces. Consequently there 
exists a sequence (Tj) in E with || 7 |̂| = 1 for all i such that i : || 7 $ J + || 7J*(/>J 
-> 0 for each n — 1,2,... . Using this fact, stability theorems from basis 
theory [12], and the definition of the norm in X(jf ), one can show that a 
subsequence of (Tf) is a basic sequence similar to the unit vector basis of c0, 
implying c0 c E. 

If E is reflexive then no such sequence (7]) can exist in E and so E embeds 
in a finite direct sum of Hilbert spaces and hence is itself isomorphic to a 
Hubert space. The embedding extends to a continuous mapping of J2?(jf ) 
into the direct sum and from this one obtains the desired projection of 
<£(#e) onto E. 

Having proved Theorem 1, we can prove that a similar situation holds 
for Cg. 

THEOREM 2. Let E be a closed subspace ofC^. Then either E is isomorphic 
to J^f or E contains c0. If E is isomorphic to J f then E is closed in J2? (Jf ) 
and moreover is complemented there. In particular E is complemented in CQ. 

To prove Theorem 2 we consider the injection i:E -+ Kffl). If i is an 
isomorphism then the theorem follows from Theorem 1. If i is not an 
isomorphism, then there is a sequence (7]) in E with ||7]||Q = 1 for all i but 
for which || T;|| -• 0. Using this fact, the stability theorem, and a rather 
subtle argument based on the properties of the norm on CQ, one can show 
that a subsequence of (7̂ ) is again basic and similar to the unit vector 
basis of c0. If E is isomorphic to Jf, then we must have E closed in K p f ) 
and the second part of the theorem follows from Theorem 1. 

3. The ideals N(Jf) and Cm. Since AT(JT) = K(Jf)* [11] and Cw = (C£)* 
[5], the results of this section are not entirely surprising in view of Theorems 
1 and 2. However just as, in general, a knowledge of the subspaces of a 
Banach space X tells one little about the subspaces of X*, so too here we 
cannot appeal to Theorems 1 and 2 to give the results directly. 

THEOREM 3. Let E be a closed subspace of N(Jf). Then E is either iso­
morphic to Jf or E contains a subspace isomorphic to I1. Moreover if E is 
isomorphic to ffl then E is closed in <£ (Jf ) and complemented there. 

To prove Theorem 3 we consider the injection i:E -• HS(J^) (the 
Hilbert-Schmidt operators on Jf ). If E is not isomorphic to jf then i is 
not an isomorphism so there exists a sequence (7]) in E with ||7^||N = 1 for 
all i but for which ||7]||HS -» 0. Now essentially the same argument as was 
used in Theorem 1 (the only difference being that the nuclear norm deter­
mines that the subsequence be similar to (et) in I1 rather than in c0) estab­
lishes the first part of the theorem. 
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If E is isomorphic to J f then the injection of E into K(Jf ) must also be 
an isomorphism and an application of Theorem 1 proves the second part 
of the theorem. 

Again, a similar result holds for the ideals Cw. 

THEOREM 4. Let E be a closed subspace ofCœ. Then either E is isomorphic 
to J^f or E contains a subspace isomorphic to I1. 

The bulk of the proof is similar to that of the previous theorems. 
However here we need to also prove the following result (which, inciden­
tally, has as a trivial corollary the result in [10]) : 

PROPOSITION 5. Let Àm be the sequence space associated with CJi.e., 
(ad e k^ o Y, tfi0i ® *A;e Co)- Then any closed infinite-dimensional sub-
space of Àœ contains I1. 

Finally, we remark that the methods employed in this paper are by no 
means limited to the investigation of spaces of operators on a Hubert 
space. For example, these methods also yield the following. 

THEOREM 6. If E is a nonreflexive subspace of K(Lp[0,1],LS[0,1]) 
(1 < p !g 2,2 ^ s < -f oo) then E contains c0. 
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