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1. Introduction. In this note we will develop a unifying theory of
collisionless n-body problems which includes both Newtonian and classi-
cal molecular forces. By using only differences to simulate physical con-
cepts and difference equations to determine dynamical behavior, the
resulting theory will be completely arithmetic in nature. Thus, we will
have the advantages of mathematical simplicity and computer compat-
ibility. The formulation will have special value for problems involving
large amounts of energy, since it will be energy conserving.

2. Basic concepts. For positive time step At, lett, = kAt,k =0,1,2,....
At time t,, let particle P; of mass m; be located at x;;, = (X4, Vi Zix),
have velocity v;;, = (v, Vix,»Vix:)» and have acceleration a;, =
(i xs Gipy» Qig2)s for i =1,2,...,n. Position, velocity, and acceleration
are assumed to be related by the fundamental formulas [2]:

(2.1) Wi h+1 + 0:0/2 = (X401 — X, )/(AD),
(22) a;, = 0541 — 0;)/(A).

If Fij = (Fiyx» Fiy. Fiy.) is the force acting on P, at time ¢, then force
and acceleration are assumed to be related by the discrete dynamical
equation

(2.3) Fix=may.

The work W, done by F;, on P; from initial time ¢, to terminal time
ty is defined by

N-1

(2.4) W, = kZO [(xi,k+1 — x50 Fiil,

while the total work W done on the system from time ¢, to time ty is
defined by

M=

(2.5) W =

i

W,

1
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3. Conservation of Kinetic energy. From (2.1)-(2.4), it follows that

Wi=m kZ,O (i1 = X ) + Vigs1 — yi,k)ai,k,y +(Zikr 1 — Zigi, 2]

N-1
2 2 2 2 2 2
m; 2 (Wi 1,0 Vi) + Okt 1, — Vi) + Ok 4 1,2 — Viik,2)]

|
N~

L, (2 2 2 1, (2 2 2
= 3mM(Vin,x + Vin,y + Vi) — 2MiViox + Vi, + Vo)

Thus, if the kinetic energy K, of P; at ¢, is defined by

(3.1) K= 3mvi s + 0fiy + 0752,

then

(3.2) W, =K;y — K.

Finally, if the kinetic energy K, of the system at ¢, is defined by
(3.3) Ky = iio K

then (2.5), (3.2), and (3.3) imply

3.4) W = Ky — K,

which is called the law of conservation of kinetic energy.
It is interesting to note that (3.4) is valid independently of the specific
structure of the forces involved.

4. The n-body force law. In order to simulate Newtonian gravitation
and various classical laws of molecular interaction ([1],[5]), we will
structure the force between each pair of particles to consist of a com-
ponent of attraction which behaves like p/(r*) and a component of repul-
sion which behaves like g/(rf), where p, g, o, and 8 are nonnegative para-
meters and r is the distance between the particles, as follows. Let r;;, be
the distance between P; and P; at time t,. Then F,, the force exerted on
P, by P;, is defined by

F i pz (rukru k+12)

ik = M. m.\— —

! lj=1;j¢,' / r;x]klruk+l(ruk+1+ruk)
4.1)

qz O(rukruk+1
+ ST (xi,k+l+xi,k_xj,k+l_xj,k)
Fiik Torr1 (P 1 Tijk
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In particular, (4.1) defines discrete Newtonian gravitation when
p =G, q=0,a =2, while it defines a force with discrete Lennard-Jones
potential when o = 7, f = 13.

5. Conservation of energy. Consider now formula (2.5) with force
defined by (4.1). In this connection the following lemma will be of value.
LEMMA. For n = 2, the following identity is valid:

n 2

z i mm;z (rukruk+1

J=Lj#ii=1 uk ruk+1(ruk+1+ruk)

(5.1) (xi,k+1+xik—xjk+1—xj,k)'(xi,k+1"xi,k)

c rak 1
_ ijk+ ijk
= 3 fmm[mn i)
ij=1;i<j Fik Tik+1

Proor. The proof follows readily by mathematical induction on n.
From (2.5), (4.1), and (5.1), then,

Nt T rf,_kl "ﬂ,k+1 rgkl
13
w=>3 > m;m; | —p -2 +4q

B—1
k=0 i,j=1;i<j Pijk r;,k+1 Tijk ruk+l

= A ol ) ol 1)
wi=ti<il o THN ot i

Defining the potential energy V;;, of the pair P; and P; at time t, by

Viik = (=p/riit + a/rizmm;
then yields

W = Z Vio — Z Viin-

i,j=15i<j iL,j=15i<j

Defining the potential energy V, of the system at ¢, by

A
i,j=1;i<j
then implies
(5.2) W =V, — Vy.
Finally, elimination of W between (3.4) and (5.2) yields
(5.3) Ky + Vy = Kq + V,, N=012,...,

which is the classical law of conservation of energy.

6. Remarks. Let us note first that the algebraic formulation of this paper
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yields other basic classical results. With regard to initial value problems,
for example, (2.3) and (4.1) imply

(6.1) S may, = 0,

so that, from (2.2),

6.2) ii mi(v; ;41 — ;) = 0.

Summing both sides of (6.2) over k from 0 to s — 1, where s = 1, yields

(6.3) m(v; s — v; ) =0.
=1

1

Since (6.3) is valid also for s = 0, then

M:

(64) mivi,s = cla N g 07

]

i=1

where ¢, is a constant vector. Formula (6.4) is, of course, the law of con-
servation of linear momentum. From (6.4) it then follows that

(6.5) Y m; (&ﬁ%) =c,, s = 0.
i=1

Thus, from (2.1),
(6.6) 'i& my(x; s+1 — X ) = (Ab)ey, s=0.
Summing both sides of (6.6) over s from 0 to r — 1, for r = 1, implies
(6.7) 'iﬁ my(x;, — X;0) = t,c;.
However, (6.7) is valid also for r = 0, so that
6.8) _nzl mx;, = t,cq + ¢y,
where ¢, is a constant vector. Finally, set M = Y7_; m; and let X, be the
center of gravity of the system at time ¢,. Then (6.8) implies
MX, =ty + c,,

from which it follows that the motion of the centroid is linear.
Finally, note that analogous techniques ([3], [4]) yield the same results

of this paper for discrete mechanical systems in which (2.2) is replaced by
either
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@ips1 + a2 = (V41 — v;)/(AD),
or

3Gay, — aig—1) = Wigs1 — v;)/(AL).
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