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1. Introduction. By computing the joint spectrum [5], [6] for certain 
systems of elements in a tensor product [3], [11] of Banach algebras, and 
applying the spectral mapping theorem in several variables [5], [6], [7], we 
find that we can determine the spectrum of certain linear operators, 
notably the tensor product S (g) T discussed by Brown and Pearcy [1], 
[12]. We can also see that the spectrum of an "operator matrix" [4], [10] 
is what it ought to be, and recover the results of Lumer and Rosenblum 
[10] about the multiplication operators LSRT and Ls + RT. Full proofs, 
and more detail, will appear elsewhere [8]. 

2. Left and right spectra. Suppose that A is a complex Banach algebra, 
with identity 1. Then the joint spectrum of a system of elements a e An is 
the union of the left spectrum and the right spectrum [5, Definition 1.1]: 

(2.1) aT\a) = olf{a)uG^\a) 

where 

(2.2) oTia) = is e Cn : 1 * £ A{a} - Sj)\ 

and 

(2.3) < x 7 » = is e Cn : 1 * £ {aâ - Sj)A j . 

The spectral mapping theorem [5, Theorem 3.2] is the equality 

(2.4) < i n t / (a) = facial 

valid for a commuting system of elements a e An and a system 
ƒ = (/i> ƒ2» • • • > f m) °f polynomials in n complex variables. Equality (2.4) 
is also valid for left and right spectra separately ; it extends [7, Theorem 4.2] 
to certain noncommuting systems of elements, where of course the idea 
of a "polynomial" has to be extended. Here we take a "polynomial in n 
variables" to be an element of the free complex algebra-with-identity 
PolyM on n generators Zj ; for an arbitrary system of elements a e An, the 
mapping ƒ -» ƒ (a) : Poly„ -* A is a homomorphism which preserves 
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identity and sends each Zj into the corresponding aj9 and then a system 
ƒ = ( fu f2, • • •, f m) e Poly? defines a mapping ƒ : X" - Am. 

It will be convenient, for what follows, if we summarize the spectral 
mapping theorems for a composite system of elements (a, b)eAn+m 

associated with two systems a e An and b e Am. It is also convenient here 
to work explicitly with the left spectrum (2.2) : The arguments for the right 
spectrum are obviously exactly similar, and can be obtained formally by 
"reversing products" in the algebra A ; then we obtain usually the corre
sponding statement for the joint spectrum by taking unions. 

As a convenient abbreviation, write [7, Definition 1.1] 

(2.5) afJM = {te olefi(b) : (5, t) e dleft(a, b)}, 

for arbitrary systems of elements a e An,be Am and scalars 5 e Cn. Also 

(2.6) a\%{b) = U KL\(b) : 5 e <r l e»}. 

LEMMA 1 [7, Theorem 2.3]. If a e An, be Am, seCn and f e Poly£+m, and 
if each a} commutes with each bk, then there is equality 

(2.7) <%f(a,b) = arjsf(s,b). 

THEOREM 1 [5, Theorems 3.2, 4.2, 4.3]. If a eA\be Am and f e Poly£+w, 
then with no restriction there is inclusion 

(2.8) /<7left(a, b) s Gle{tf (a, b). 

If a e An is commutative and commutes with be Am then there is equality 

(2.9) <TMtf(a,b) = alflJ(a,b). 

If the whole system (a, b)e An+m is commutative then there is equality 

(2.10) oi«if(a9b) = foï«Xa9b). 

These results are valid [7, Theorems 4.2, 4.3] if we replace each com-
mutivity condition by the corresponding "quasi-commutivity" require
ment [7, Definition 3.1]. 

3. Tensor products. If A and B are complex Banach algebras then we 
shall denote by A (g) B the completion of the algebraic "tensor product" 
A (g)c B with respect to some uniform crossnorm [3], [11] which is com
patible with the multiplication (a (g) b){a' ® b') = {aa') <g) (bb'). Thus 
elements of the form £f= xar®br form a dense subspace, elements of 
the form ax ® bY have norm HaJ UfeJ, and for every pair of bounded linear 
functional cpeA* and ij/ e B*, the linear functional 

R R 

(3.1) (p®ll/: X ar ® br -+ Z VWWr) 
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is bounded, and extends to the product A ® B. 

THEOREM 2. If as An and be Bm are arbitrary then the system 

(a ® 1,1 ® b) = {a1 ® 1, a2 ® 1 , . . . , an ® 1,1 ® bu..., 1 ® bm) 

has left spectrum given by the product 

(3.2) oxl%B{a ® 1,1 ® b) = oxf{d) x ax^(b). 

Similarly for the right spectrum ;for single elements a = axeA and b = bieB 
there is inclusion 

(3.3) Ô (aA(a) x aB{b)) S <£*(<* ® U ® 6) £ oA{a) x <rB(b). 

PROOF. The left-hand side of (3.2) is obviously included in the right ; if, 
conversely, s e Cn is in ox

A\a) and t e Cm in Ö"1/l(fr), then the systems a — s 
and b — £ generate proper closed left ideals M and N 'm A and fi. By the 
Hahn-Banach theorem there exist bounded linear functional cpeA* 
and i/^eJB* for which q>{\) = ^(1) = 1, while q>{M) = \I*{N) = {0}. Now 
the functional (p ® \j/ of (3.1) annihilates the left ideal generated by the 
system ((a — s) ® 1,1 ® (b — t)) in the algebra A ® £, but not the identity 
1 ® 1. This puts (5, t) e Cn+m in the left spectrum of the system (a ® 1,1 ® b). 

For the inclusion (3.3) we use the fact [5, Lemma 4.1] that the topological 
boundary of the spectrum of a single element in a Banach algebra lies in 
the intersection of its left and right spectra. 

4. Spectral mapping theorems. The combination of (3.2) from Theorem 2 
with (2.10) from Theorem 1 gives at once 

THEOREM 3. If a e An and be Bm are commuting systems of elements, and 
/ePoly£+ M , then there is an equality 

(4.1) <#§*ƒ(* ® 1,1 ® b) = f{cT(a) x cT{b)\ 

Similarly f or right spectra; for single elements a = ax e A and b = b±eB, 
and one polynomial in two variables ƒ = f1e Poly2, there is equality 

(4.2) oMBf{a ® 1,1 ® b) = f {aM x aB(b)). 

PROOF. For the second part apply (3.3), together with a simple observa
tion about polynomials in two complex variables : 

(4.3) f(d(oA(a) x oB(b))) = f(aA(a) x <jB(b)\ 

One way to see this is to count the zeroes of the polynomial ƒ (•, w) — r in 
the interior of the compact set oA(a\ for each complex number r and each 
point w of aB(b) ; compare Lemma 2.2 of [12]. 

The Brown-Pearcy result [1] is the case f (a ® l , l ® f e ) = a®fc, with 
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A — B =J£(E, E) for a Hubert space E. Our arguments readily extend to 
Schechter's generalization [12], which covers the product of n copies of 
A = J?(E, E) for a Banach space £, and rational functions ƒ with no 
singularities on the joint spectrum. Note carefully the difference between 
the "joint spectrum" of Schechter's paper [12] and ours in (2.1). 

If only one of the systems a e An and ft e Bm is commutative we still, 
using (2.7) and (2.9) instead of (2.10), obtain a result sufficient to determine 
the spectrum of an "operator matrix" : 

THEOREM 4. IfaeA" is a commuting system, ifbeBm is arbitrary, and if 
ƒ e Poly^+M is a system of polynomials, then there is equality 

(4.4) olX%Bf{a ® 1,1 ® b) = (J {<#"ƒ(s, b):se olf{a)}. 

PROOF. The right-hand side of (4.4) is included in the left because, if 
seCn is in a^\a) and reCp in (T^eft/(s,fc), then by (3.2), the system 
(s, r) e Cn+P is in axX%B{a ® 1, 1 ® ƒ (s, ft)), and by (2.7), also in al2%B(a ® 1, 
f (a ® 1,1 ® b)). Conversely if r is in the left-hand side of (4.4) we apply 
(2.9) to find seCn for which (s, r) is in oxX%B{a ® 1, f {a ® 1,1 ® ft)), and 
use (2.7) again. 

For the application to "operator matrices" take B = Cqq to be the 
algebra of q x q complex matrices, so that the tensor product A ®c B is 
"q x q matrices with entries in A": All the uniform crossnorms give the 
same Cartesian product topology. If we take b = {blu b12,..., bqq) eBq2 

to be the usual basis for the vector space B then an arbitrary matrix can 
be written 

(i 

(4.5) ƒ (a <g> 1,1 <g> b) = X % ® bifc ; 

we claim that, for a commuting system of entries a = (alu a 1 2 , . . . , aqq\ 

(4.6) GA%Bf(a ® 1, 1 <g> ft) = {r e C :0 G <JA det( ƒ (a ® 1,1 ® ft) - r/)}. 

The result can be obtained [9, Chapter 5] by extending the numerical 
determinant theory : here we use (4.4) on the left-hand side of (4.6), and 
apply (2.4) to the right-hand side. 

5. Multiplication operators. Associated with a system a G An of Banach 
algebra elements are the systems La and Ra of multiplication operators, 
where, for each j — 1, 2 , . . . , n, 

(5.1) Laj(x) = ajX (xeA) and Raj(
x) = xaj (xeA). 

Lumer and Rosenblum obtained the analogue of (4.2), with La and Rb 

in place of a ® 1 and 1 ® ft, in the case A =<£?(£, E) for a Banach space E. 
To summarize a derivation of this result we recall the left and right 
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"approximate point spectrum" [5, Definition 1.3] of a system of Banach 
algebra elements : 

(5.2) i j ? » = j s e C : inflwl è 1 £ ||(flj - Sj.)x|| = o | 

and 

(5.3) x^\a) = is e C" : inf|W| * t £ ||x(a,. - s,)|| = 0 1 . 

Of course these are subsets of the left and right spectra (2.2) and (2.3); 
there is equality if A =J£(E, E) is the bounded linear operators on a 
Hubert space [5, Theorem 2.5], [2], and for a single element a = ax the 
topological boundary of the spectrum includes the intersection of (5.2) and 
(5.3) [5, Lemma 4.1]. The results of Lumer and Rosenblum [10] can be 
derived from 

THEOREM 5. If A = J£{E, E) for a Banach space £, and if Se A" and 
TeAm are systems of bounded linear operators, then there is inclusion 

(5.4) if\S) x T«*\T) s al£%,A)(Ls, RT) S o™%S) x <f)f\T) 

and 

(5.5) zTh\S) x zf\T) ç o$frA)(LS9RT) s ^ h t ( S ) x <tfXT). 

For single operators S = Sx and T = 7\ there is inclusion 

(5.6) S (aA(S) x G AT)) ç= ̂ U ) ( ^ « r ) S M S ) * M Ï Ï 

PROOF. The arguments for (5.4) and (5.5) are extracted from the proofs of 
Theorem 9 and Theorem 10 of Lumer and Rosenblum [10] ; then (5.6) 
follows in the same way as (3.3). 

For one polynomial ƒ = fx in two variables, and for operators S = Sx 

and T = T\ on a Banach space it follows, analogous to (4.3), that 

(5-7) c^lAtA)f(Ls, RT) = f {a AS) x aA(T)). 

This of course is the result of Lumer and Rosenblum [10, Theorem 10]. 
Also for a Hubert space E we obtain equality throughout (5.4) and (5.5), 
and hence analogues for Theorems 3 and 4. 

REFERENCES 
1. A. Brown and C. Pearcy, Spectra of tensor products of operators, Proc. Amer. Math. 

Soc. 17 (1966), 162-169. MR 32 #6218. 
2. L. A. Coburn and M. Schechter, Joint spectra and interpolation of operators, J. Func

tional Analysis 2 (1968), 226-237. MR 37 #3364. 
3. J. Gil de Lamadrid, Uniform cross norms and tensor products of Banach algebras, Duke 

Math. J. 32 (1965), 359-368. MR 32 #8125. 
4. P. R. Halmos, A Hubert space problem book, Van Nostrand, Princeton, N.J., 1967. 

MR 34 #8178. 



372 ROBIN HARTE 

5. R. E. Harte, Spectral mapping theorems, Proc. Roy. Irish Acad. 72A (1972), 89-107. 
6. , The spectral mapping theorem in several variables, Bull. Amer. Math. Soc. 78 

(1972), 870-874. 
7. , The spectral mapping theorem for quasicommuting systems, Proc. Roy. Irish 

Acad. 73A( 1973), 7-18. 
8. 5 Tensor products, multiplication operators and the spectral mapping theorem, 

Proc. Roy. Irish Acad, (to appear). 
9. K. Hoffman and R. Kunze, Linear algebra, Prentice-Hall Math. Ser., Prentice-Hall, 

Englewood Cliffs, N.J., 1961. MR 23 # A3146. 
10. G. Lumer and M. Rosenblum, Linear operator equations, Proc. Amer. Math. Soc. 10 

(1959), 32-41. MR 21 #2927. 
11. R. Schatten, A theory of cross-spaces, Ann. of Math. Studies, no. 26, Princeton Univ. 

Press, Princeton, N.J., 1950. MR 12, 186. 
12. M. Schechter, On the spectra of operators on tensor products, J. Functional Analysis 4 

(1970), 95-99. 

DEPARTMENT OF MATHEMATICS, UNIVERSITY COLLEGE, CORK, IRELAND 


