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ALGEBRAS OF FUNCTIONS ON THE UNIT CIRCLE 

BY DONALD SARASON 

1. Introduction. I should like to discuss in this article a few recent 
developments in function theory on the unit circle. Rather than attempt 
a broad survey, I have chosen to concentrate on a fairly narrow circle of 
ideas which I find especially interesting and which seems suitable for 
presentation to a general audience. This area, while motivated in large 
part by functional analytic considerations, has a distinctly classical 
flavor, and some of the questions I shall mention here might have aroused 
interest forty or fifty years ago if anyone had thought to raise them at the 
time. 

The ideas we shall be concerned with fit into the general contexts of the 
theory of function algebras and the theory of Hardy spaces and related 
classes of analytic functions. I have tried to make the bulk of the article 
intelligible to anyone with a basic knowledge of functional analysis and 
function theory. Familiarity with a few technical—although by no means 
esoteric—notions, such as those of a Blaschke product and an inner 
function, will be helpful to the reader but not indispensable. I have 
included a few simple proofs here and there where I could do so without 
being led too far astray. Two minor results below, Theorems 2 and 5, 
have not to my knowledge been published before. 

Notations. We denote the open unit disk by D and its boundary, the unit 
circle, by dD. The independent variable on dD will be denoted either by z 
or by ew

9 according to convenience. The basic algebras we shall be con­
cerned with are C, the algebra of continuous complex valued functions on 
dD, and L00, the algebra of (classes of) essentially bounded, measurable, 
complex valued functions with respect to Lebesgue measure on dD. These 
are Banach algebras under the supremum and essential supremum norms, 
respectively. We recall that, by the Gelfand-Naimark theorem, L00 is 
isometrically isomorphic to C(X) for a certain compact Hausdorff space 
X (the "maximal ideal space" of L00). 

We denote by A and H00 the algebras of functions in C and L00, respec­
tively, whose Fourier coefficients with negative indices vanish. The 
functions in A are the boundary functions for the functions that are 
analytic and uniformly continuous in D ; those in Hœ are the boundary 
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functions for the functions that are analytic and bounded in D. We shall 
consistently identify the functions in A and H°° with their natural analytic 
extensions into D. 

2. Wermer's maximality theorem. I should like to begin this account with 
a theorem discovered approximately twenty years ago by John Wermer 
[27]. About a year previously, Z. L. Leïbenson [17] had proved that if ƒ is 
any function in C which does not belong to A, and if the conjugate function 
of ƒ is in C, then the algebra generated by ƒ and A is dense in C. He raised 
the question whether one can remove the condition that the conjugate 
function of ƒ be continuous. Wermer answered this in the affirmative, 
stating his result as follows : If B is a closed subalgebra of C and A cz B, 
then either B = A or B = C. 

In general, if X is a compact Hausdorff space, a proper closed sub­
algebra of C(X) is called maximal if no proper closed subalgebra of C(X) 
contains it properly. Thus, Wermer's result states that A is a maximal 
closed subalgebra of C. Subsequent to Wermer's discovery, other examples 
of maximal subalgebras were found, and, in 1960, Hoffman and Singer 
published a general study of such algebras [16]. (The latter paper contains a 
bibliography of previous work.) One question considered by Hoffman and 
Singer is whether, for an arbitrary X, every proper closed subalgebra of 
C(X) is contained in a maximal closed subalgebra. They answered this 
negatively ; the space X in their counterexample is the maximal ideal space 
of L00, and the subalgebra is the image of H00 under the Gelfand trans­
formation of L00. 

Nevertheless, there is a sense in which H™ is a maximal subalgebra. 
By adapting a very simple proof they had found of Wermer's theorem, 
Hoffman and Singer showed that H°° is maximal among the proper 
weak-star closed subalgebras of L00 (where, by the weak-star topology on 
L00, we understand, as usual, the weak topology arising from the duality 
between L00 and L1). In fact, they proved the following stronger result 
(stronger in virtue of the weak-star density of C in L00). 

THEOREM 1. If B is a closed subalgebra ofL00 which contains H°° properly, 
then B contains C. 

A short although somewhat indirect argument enables one to deduce 
Wermer's theorem from the weak-star maximality of H00. Still, it is natural 
to seek a more direct link between Theorem 1 and Wermer's theorem by 
trying to formulate a common generalization which contains both 
theorems as special cases. An obvious first attempt at such a generalization 
is to ask whether every closed subalgebra of L00 which contains A but is 
not contained in H00 must contain C. 

The preceding question, it turns out, has a negative answer. (A counter-
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example will be presented shortly.) Searching a little further, one finds that 
the Hahn-Banach theorem plays a decisive role. 

If Y is a Banach space and Y0 is a subspace of Y, the Hahn-Banach 
theorem asserts that any bounded linear functional cp0 on Y0 has a bounded 
linear extension cp to Y satisfying ||<p|| = ||<p0||. If there is only one such cp, 
then (p0 is said to have a unique Hahn-Banach extension. 

THEOREM 2. Let B0 be a subalgebra of H00 which contains A and which, 
whenever it contains a function f contains also the function [f(z) — f(0)]/z. 
Let cp0 be the functional on B0 defined by (p0(f) = /(0). Let B be a closed 
subalgebra of L00 which contains B0 but is not contained in H°°. Assume that 
cp0 has a unique Hahn-Banach extension to B. Then B contains C. 

We can prove this by borrowing a simple argument G. Lumer [19] has 
given to establish Wermer's theorem. We reason by contradiction, 
assuming that B does not contain C. Then B does not contain the function 
z" 1 because, by the Weierstrass theorem, the uniformly closed algebra 
generated by z _ 1 and A is C. Therefore, the ideal J in B consisting of all 
functions zf with ƒ in B is proper and so contains no invertible elements 
of B. Hence, each function in J is at a distance of at least 1 from the constant 
function 1. The Hahn-Banach theorem now implies that there is a bounded 
linear functional cp on B which annihilates J and satisfies ||<p|| = cp{\) = 1. 
Obviously, cp is a Hahn-Banach extension of cp0. But integration with 
respect to d6/2n defines a Hahn-Banach extension of (p0 and thus must 
define the extension (p. If ƒ is any function in B and n is any positive 
integer, then the function znf is in J and so is annihilated by cp ; that is, 

This says that all the Fourier coefficients of/ with negative indices vanish, 
so that ƒ is in H00. We have arrived at a contradiction to the hypothesis 
that B is not contained in H00, and the theorem is proved. 

An additional remark will be helpful in interpreting Theorem 2. If J50, 
<p0 and B are as in Theorem 2, and if cp is any bounded linear extension 
of (p0 to B, then the condition that cp be a Hahn-Banach extension of 
cp0 (i.e., that \\<p\\ = 1) is easily seen to be equivalent to the condition that cp 
be positive, in other words, that Re cp( ƒ ) ^ 0 whenever Re ƒ ^ 0. The 
following condition is therefore clearly sufficient for cp0 to have a unique 
Hahn-Banach extension to B : 

sup{Re <p0(g) : g e J30, Re g S Re /} 

= inf{Re <p0(g) :g e B0, Re g ^ Re /} for all ƒ G B. 
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This condition is also necessary, as one can show by an adaptation of the 
standard proof of the Hahn-Banach theorem. (Condition (1) was first 
used systematically in the study of function algebras by Lumer [18].) 

If B0 — A and B c C, then (1) follows from the uniform density of the 
real trigonometric polynomials in the real continuous functions on dD. 
One thus obtains Wermer's theorem as an immediate corollary of Theorem 
2. If B0 = H00 then (1) again holds, so Theorem 1 is also a corollary of 
Theorem 2. The validity of (1) in this case, however, is much less immediate ; 
it was first established by Gleason and Whitney [12]. Later, Hoffman [15, 
p. 182] found an alternative proof that the functional on H00 of evaluation 
at 0 has a unique Hahn-Banach extension to L00. (The latter result was not 
known at the time [16] was published, preventing the inclusion of Theorem 
1 in [16]. Theorem 1 was first published in [15].) 

Another case in which (1) holds is when all the functions in B are 
Riemann integrable. This observation yields the following corollary to 
Theorem 2 : A closed subalgebra of L00 which contains A and which contains 
at least one Riemann integrable function not in A contains every function 
in C. 

To round out this discussion, I want to mention an example of a closed 
subalgebra of L00 which contains A, is not contained in H00, and yet does 
not contain C. The preceding corollary suggests that we might produce 
such an example by taking the closed subalgebra generated by A and a 
single function that is not Riemann integrable. Accordingly, we let K be a 
closed nowhere dense subset of dD of positive Lebesgue measure, and we 
consider the closed subalgebra B of L00 generated by A and %K, the 
characteristic function of K. The functions of the form xKg + h with g 
and h in A form a dense subset of B. Because dD — K is dense in 3D, the 
distance (in L00) of the function %Kg + h from the function z~ * is at least as 
large as the distance of h from z ~ \ which is at least 1. Hence z" 1 is not 
in B. 

Finally, I wish to mention the papers of Cohen [3] and Srinivasan and 
Wang [26], which contain proofs of Wermer's theorem, each interesting 
for a different reason. The proof of Srinivasan and Wang makes a connec­
tion between Wermer's theorem and the invariant subspace structure of 
the shift operator. The weak-star maximality of if00 can also be approached 
via the invariant subspace structure of the shift operator ; see [13, p. 27] and 
[23]. 

3. H00 + C. I shall be concerned in the remainder of this article mainly 
with closed subalgebras of L00 that contain H°° properly. By Theorem 1 
there is a smallest such algebra, namely, the closed subalgebra of L00 

generated by H00 and C. Somewhat unexpectedly, this algebra turns out 
to equal H00 + C, the linear hull of H00 and C (a fact which seems to have 
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first been pointed out in [20]). The algebra H00 + C arises, among other 
ways, in the study of Toeplitz operators [5], [8] and in a problem in 
prediction theory investigated by H. Helson and the author [14], [21]. 
In the present section I shall describe a few of the basic properties of 
tf00 + C. 

The key observation needed to prove that H00 + C is closed in L00 is 
this: (*) If f is any function in C, then dist(/, A) = dist( ƒ, H °°). In other 
words, the map of C/A into L°°/H™ which sends ƒ + A to ƒ + H00 is an 
isometry. The range of the preceding map is consequently closed, so 
H°° + C, the inverse image of that range under the quotient map of L00 

onto L00///00, must also be closed. 
The quotient space L°7H°° can be naturally identified with the bidual of 

the quotient space C/A. Under this identification, the above described map 
becomes the canonical embedding of C/A into its bidual. Since such 
canonical embeddings are isometries, the distance equality (*) follows 
immediately. (See [14] for additional details.) L. Zalcman [28] has pointed 
out the following more direct proof of (*). For ƒ in C and h in #°°, let fn 

and hn be the nth Cesaro means of the Fourier series of ƒ and h. Then 

\\f-hn\L ^ \\f-fn\L + Wfn ~ M o o S Wf-fnWoo + IIƒ " *lloo, 

because the L00-norms of the Cesaro means of a function do not exceed 
the L^-norm of the function. Since || ƒ — / J ^ -> 0, and since each hn is 
in A, we conclude that dist(ƒ, A) ^ dist(ƒ, H°°). The reverse inequality is 
trivial. 

Once one knows that H °° + C is closed, it is a simple matter to prove 
that it is an algebra. For n = 1,2,..., the subspace z~nHœ is contained 
in H00 + C. The subspace (Jf z-M#°° is an algebra and its closure, which 
is also an algebra, is easily seen to contain H00 -f C. Since H00 + C is 
closed it must equal the closure of (J 5° z~nH™, and therefore H00 + C is 
an algebra. 

In studying a Banach algebra, it is often useful to have a criterion which 
identifies the invertible elements of the algebra. Such a criterion for 
H00 + C has been established and exploited by R. G. Douglas [5] ; it 
involves the behavior inside the unit disk of the harmonic extensions of the 
functions in H00 + C. We let P denote the Poisson kernel : 

P(r, 0) = (1 - r2)/(l - 2r cos 9 + r2). 

For ƒ in L00, the harmonic extension of ƒ into D is defined by Poisson's 
formula : 

f{reW) = étf /(*VM-0*. 

file:////f-fn/L
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I f / i s in Hœ this coincides with the analytic extension of ƒ into D. We shall 
henceforth think of the functions in L00 as extended harmonically into D. 
For 0 < r < 1 we define fr(e

ie) = f(rew). 
The key to Douglas' criterion is the observation that the Poisson 

integral is asymptotically multiplicative on #°° + C. The following 
theorem expresses the latter property. 

THEOREM 3. If f and g are in H00 + C, then \\frgr - (/g^lU -> 0 as r -> 1. 

The theorem is an easy consequence of the following lemma. 

LEMMA. Iff is in C and g is in L00, then \\frgr — (/g)r||oo ~* 0 as r ~* 1-

The lemma can be proved by means of straightforward estimates of 
Poisson integrals. The proof will not be given here. 

The invertibility criterion of Douglas is given by the next theorem. 

THEOREM 4. A function ƒ in H00 + C is invertible in H™ + C if and only 
if there is an r0 < 1 such that ƒ is bounded away from 0 in the annulus 
r0 < \z\ < 1. 

To establish the necessity of the condition in the theorem, assume that ƒ 
is invertible in H00 + C, and let g=f~x. Then, by Theorem 3, 
II fgr ~ 111oo -> 0 as r -> 1. If we choose r0 so that \\frgr - 1IL < \ for 
r > r0, we have | f(z)\ > l^HgH^ for r0 < \z\ < 1, so ƒ satisfies the con­
dition. 

To establish the sufficiency of the condition in the theorem, assume 
first that ƒ is a function in H00 which satisfies the condition. Then 1/f is 
bounded and analytic in an annulus r0 < \z\ < 1, so 1/f can be written 
there as the sum of a function which extends to be bounded and analytic 
in D and a function which extends to be bounded and analytic in \z\ > r0. 
The preceding decomposition yields an expression for 1/f on dD as the 
sum of a function in H°° and a function in C, so ƒ is invertible in H00 + C, 
as desired. 

To complete the proof of Theorem 4, assume that ƒ is any function in 
H00 + C satisfying the condition in the theorem, say \f{z)\ > s\\ƒH^ for 
r0 < \z\ < 1. Because ƒ is in H°° + C we have dist(/, z~n#°°) -• 0 as 
n -> oo, so we can find a n n ^ O and an /z in H™ such that || ƒ — z~nh\\O0 

< s\\ /llooA The result proved in the preceding paragraph, together with a 
straightforward estimate, implies that h is invertible in H °° + C with 
11 "̂ 1lloo < 2/fill/lloo. The last two inequalities combine to give \\znhf — lH^ 
< 1, so znhf is invertible in #°° + C. Thus ƒ is invertible in H00 + C, as 
was to be proved. 

Among inner functions (i.e., functions in H°° having unit modulus almost 
everywhere on 3D), the only ones satisfying the condition of Theorem 4 are 
the finite Blaschke products (see, for example, [25]). Hence, the finite 
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Blaschke products are the only inner functions that are invertible in 
H°° + C. A function in #°° is invertible in H00 + C if and only if it is 
invertible in L00 and its inner factor is a finite Blaschke product. 

Theorem 4 enables one to define an index on (H00 + C)~ \ the group of 
invertible elements of H00 + C. For ƒ in C _ 1 we define ind/, as usual, to 
be the winding number of ƒ about 0. For ƒ in {H™ + C)"1 we define 
ind ƒ to equal ind fr where r0 < r < 1 and r0 is as in Theorem 4. The index 
on (H°° + C ) - 1 has the usual properties of an index, namely, it is stable 
under small perturbations and it is a homomorphism of (H00 + C ) - 1 

onto the group of integers. 
To the information in Theorem 4 one can add a structural description 

of the invertible functions in H™ + C analogous to the known description 
of the invertible functions in H00. The invertible functions in H00 are the 
outer functions that are invertible in L00, that is, the functions of the form 
X exp(w + iü\ where X is a nonzero constant, u is a real function in L00, 
and w is the conjugate function of u. All such functions have index 0. 

If ƒ is an invertible function in if00 + C then we can write f = wh 
where |w| = 1 (a.e.) and h is an invertible function in H™. Namely, for the 
function h one takes exp[log \f\ + /(log | / | ) ~ ] ; except for a scalar factor 
of modulus 1, h is uniquely determined by ƒ To describe the invertible 
functions in H00 + C, therefore, we can restrict our attention to uni­
modular functions. 

Any unimodular function in C is of course invertible in C and hence 
also in H00 + C. A unimodular invertible function in #°° + C which is 
discontinuous can be produced as follows. Choose a real function v in C 
such that v is not continuous. We can write exp(/t;) = exp(i; + iv)Qxp(-v). 
In the preceding factorization, the first factor is an invertible function in 
H°° and the second factor is an invertible function in C. The product, 
which is discontinuous, is therefore an invertible function in H00 + C. 
It has index 0 because each of its factors does. 

The following theorem gives a complete description of the unimodular 
invertible functions in #°° + C. 

THEOREM 5. Let w be a unimodular invertible function in H°° + C of 
index n. Then there are real functions u and v in C providing the representa­
tion w = zn exp[i(u + v)]. 

A unimodular function in H™ + C is invertible if and only if its complex 
conjugate belongs to if00 + C. Following Douglas, we let QC (for "quasi-
continuous") denote the algebra of functions in Hœ + C whose complex 
conjugates belong to H°° + C (that is, the largest C*-algebra contained in 
H00 + C). A moment's thought reveals that QC consists precisely of the 
bounded functions in C + C. In C, any invertible function of index 0 has 
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a logarithm, that is, a logarithm which belongs to C. The analogous 
statement for QC is incorrect, but Theorem 5 says that it is, in a sense, 
almost correct : Any invertible function in QC of index 0 has a logarithm 
in C + C. 

To prove Theorem 5 we assume that dist(w, H°°) < 1. Even if this is not 
true of w, it is true of zkw for k sufficiently large, so the assumption involves 
no loss of generality. Choose h in H00 such that ||w — M^ < 1. Then 
|| 1 — hw'1]]^ < 1, so ftw"1 is invertible in H00 + C and, in fact, has a 
logarithm in H00 + C. It follows, in particular, that h is invertible in 
H00 + C, so the inner factor of h is a finite Blaschke product; that is, 
h = b e x p ^ + ivi), where b is a finite Blaschke product and vx = log \h\. 
Since hw'1 has a logarithm in H00 + C so does w/T \ enabling us to write 
wh~x = exp(/ + g) where ƒ is in C and g is in H00. Setting f = v1 + Re g, 
we obtain w = b exp(/ + i; + iv). Since |w| = 1 we must have v = — Re ƒ, 
so i; is in C, and, setting wx = Im ƒ, we have w = b exp^i^ + #)]. Finally, 
if n denotes the number of zeros that b has in Z), then z~nb has a logarithm 
in C, say z~nb = exp(iw2). Letting u = ux + w2, we obtain the desired 
representation w = zn exp[i(u + #)]. 

There is a well-known structural description of the unimodular func­
tions in Hœ (i.e., the inner functions) [15], [25]. It is natural to seek an 
analogous description of the unimodular functions in H°° + C. Theorem 5 
can be viewed as a first step in that direction. It prompts the following 
question, which I have been unable to answer: Can every unimodular 
function in H00 + C be factored as the product of an inner function and an 
invertible function? One cannot expect such a factorization, if it exists, 
to be unique, because it is possible for the quotient of two distinct inner 
functions to be an invertible function in H°° + C. 

The preceding observation suggests it might be interesting to study the 
circumstances under which one inner function can divide another one in 
the algebra H00 + C. Although the situation with regard to divisibility 
in the algebra H°° is clear-cut, things are much more complicated in 
H°° + C. For instance, in H00 + C, the inner function exp[(z + l)/(z - 1)] 
divides and is divisible by a Blaschke product [20]. I do not know the 
answer to the following question : Can one singular inner function divide 
another one in Hœ + C without already dividing it in //°°? 

There is much more one can say about H°° + C, but I want to go on to 
other topics. I do want to mention in passing an interesting property 
which was recognized by Kenneth Hoffman. It characterizes the functions 
in H00 + C as the functions in L00 that belong to H°° "at each point of 
5D." The reader will find a more precise formulation of this property, as 
well as proofs, in [8] and [22]. 

The algebra QC appears to merit additional study. One might hope, 
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for example, to obtain a reasonably concrete description of the maximal 
ideal space of QC. It is interesting that the functions in QC can be charac­
terized in terms of a smoothness property. The characterization comes 
out of recent work of FeflFerman and Stein [10] concerning functions of 
bounded mean oscillation. To state it, we define, for ƒ in L1 and / a subarc 
of <3D, 

av //=|/r1 ƒ fdO, 

where | ƒ| = J, d6. In addition, we let 

M r ( / )= sup l /p1 f | / - a v , / | d 0 , 0 < r £ l , 
| Z | ^ 2 w JI 

M0(f) = \im M r( f ). 

The quantity MY(f) is called the mean oscillation of ƒ In case MY(f) < oo 
one says that ƒ has bounded mean oscillation or that ƒ belongs to BMO. 
In case M0( ƒ ) = 0 one says that ƒ has vanishing mean oscillation or that ƒ 
belongs to VMO. The basic result of [10] is the equality BMO = L00 

+ (L°°)~. It is comparatively easy to prove from this that VMO = C 4- C. 
We thus have the equality QC = L00 n VMO. 

A unimodular function in QC has the interesting property that the 
absolute value of its harmonic extension is continuous in D. In connection 
with a problem we shall discuss in the next section, R. G. Douglas has 
asked whether the last statement has a converse. More precisely, if w is in 
L00, if |w| = 1 (a.e.), and if the absolute value of the harmonic extension of w 
is continuous in D, must w belong to QC1 It seems to the author that one 
should be able to resolve this question by exploiting the connection 
between QC and VMO. 

If w has the above properties and if B is the closed subalgebra of L°° 
generated by H00 and w, one can show that the Poisson integral is asympto­
tically multiplicative on B, in the sense described in Theorem 3. Conversely, 
one can show that if there is a closed subalgebra of L00 containing H00 + C 
properly on which the Poisson integral is asymptotically multiplicative, 
then this algebra contains a function w with the above properties which 
does not belong to H00 -f C. Douglas' question, therefore, is equivalent to 
the question of whether the Poisson integral can be asymptotically 
multiplicative on a proper superalgebra of H00 + C. 

4. Douglas9 problem. In [6\, Douglas shows how the study of Toeplitz 
operators on H2 leads to an investigation of certain closed subalgebras of 
L00 which contain /f °°. He defines his algebras in terms of their generators, 
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and he asks whether every closed subalgebra of L00 which contains H00 

might not be of the kind he is considering. The question raised by Douglas 
is still unresolved. In the remainder of this article I shall discuss the 
question and describe some work related to it. 

For B a closed subalgebra of L00 which contains H00, we let BI denote 
the closed subalgebra generated by H°° and the inverses of the functions 
in H00 that are invertible in B. Obviously BI a B ; if BI = B we call B a 
Douglas subalgebra. Douglas' question is whether the equality BI = B 
always holds. 

The algebra BI can be defined, alternatively, as the closed subalgebra 
generated by H00 and the complex conjugates of the inner functions that 
are invertible in B. (This is so because, if a function in H™ is invertible in L00, 
then its outer factor is invertible in H°°, so the function itself is invertible 
in B if and only if its inner factor is.) Douglas' question can thus be re­
formulated to read as follows : Is every closed subalgebra of L00 which 
contains H00 generated by H00 and the complex conjugates of inner 
functions? 

The algebra H00 + C is obviously a Douglas subalgebra ; it is generated 
by H00 and the complex conjugate of the inner function z. The algebra L00 

is also a Douglas subalgebra. This can be established by the following 
simple argument due to W. Rudin. It is enough to show that Lf contains 
the characteristic function of every Borel subset of dD. Let % be such a 
characteristic function, and let u = \ — %. Then ƒ„ = 1 + exp[n(w + iu)] 
(n = 1,2,...) is in H°° and is invertible in L00. Since fn~

1 -» % in L°°-norm 
as n -> oo, the function x belongs to Lf, as was to be proved. 

At this point it is natural to raise the following general question, an 
affirmative answer to which would entail an affirmative answer to Douglas' 
question: Let B, B\ B" be commutative Banach algebras such that 
B' c B cz B\ and such that B" is generated by B' and the inverses of the 
functions in BI that are invertible in B". Is B necessarily generated by B' 
and the inverses of the functions in B' that are invertible in BI I am em-
barassed to report that I pondered various aspects of Douglas' question 
for several years without hitting upon this obvious generalization, which 
was eventually pointed out by P. R. Halmos. It is fortunate for my peace 
of mind that the generalized question has a negative answer. To obtain a 
simple counterexample, take B" = C, B = A, and B' equal to the algebra 
of functions in A whose first derivatives vanish at the origin. 

We can gain a different perspective on Douglas' question by considering 
it from the point of view of the Gelfand theory. Let X and Y denote the 
maximal ideal spaces of L00 and H00, respectively, with their Gelfand 
topologies. We shall find it convenient to make the usual identification of 
the maximal ideals in X and Y with the multiplicative linear functionals 
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they induce. Although the spaces X and Y cannot be described in concrete 
terms, a good deal of information about their structures is available. I 
shall mention a few pertinent facts ; more details can be found in Chapter 10 
of [15]. Each functional in Y can be thought of as "lying above" a certain 
point in the closed disk D ; the point in question is the value of the functional 
on the function z. Only one functional in Y lies above each point in the 
open disk Z), namely, the functional of evaluation at that point. Thus, D 
may be identified with a subset of Y This identification is, in fact, a homeo-
morphic embedding of D onto an open subset of Y By the famous corona 
theorem of Carleson [2], D is dense in Y The space X can also be homeo-
morphically identified with a subset of Y The identification in question 
associates with a functional in X its restriction to H00. Under this identifica­
tion, X becomes the Shilov boundary of the algebra H00. By a theorem of 
Hoffman, each functional y in Y has a unique Hahn-Banach extension to 
L00 and so is represented by a unique Borel probability measure my on X. 
If ƒ is the Gelfand transform of the function ƒ in L00, we extend ƒ to Y by 
defining J(y) = ƒ fdrny. The extended ƒ is continuous. 

Let B be a closed subalgebra of L00 which contains H00, and let M(B) 
denote the maximal ideal space of B (or, as we prefer to think of it, the 
space of multiplicative linear functional on B\ with the Gelfand topology. 
The theorem of Hoffman referred to above guarantees that distinct 
functional in M(B) have distinct restrictions to H™. Thus, by associating 
each functional in M{B) with its restriction to H00, we can homeomorphi-
cally identify M(B) with a subset of Y If cp is an inner function, or, for that 
matter, any unimodular function in J3, then cp is invertible in B if and only 
if \<p\ = 1 everywhere on M(B\ Conversely, if B is generated by H00 and 
the complex conjugates of certain inner functions, then M(B) consists 
precisely of the set of points in Y at which the Gelfand transforms of the 
inner functions involved all have unit modulus. Thus, if Douglas' question 
has an affirmative answer, then B is uniquely determined by M{B\ that 
is to say, the following question has a negative answer: Do there exist 
distinct closed subalgebras B and B' of L00 which contain Hœ such that 
M(B) and M(B') coincide (as subsets of Y)? A theorem of Garnett and 
Glicksberg [11], although it contains a hypothesis not fulfilled in the pre­
sent situation, is closely enough related to suggest the possibility that 
techniques from the general theory of uniform algebras may lead to an 
answer or at least provide some insight. 

The algebra H00 + C is generated by H00 and the complex conjugate of 
the inner function z. The Gelfand transform of z has unit modulus except 
at the points of D. Hence, M(Hœ + C) = Y - D. For B a closed sub-
algebra of L00 which contains H°° properly, it is not hard to show that 
M(B) = Y — D if and only if the Poisson integral is asymptotically 
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multiplicative on B. The question in the last paragraph, therefore, in the 
special case where B' = Hœ + C, reduces to the question raised at the 
end of the preceding section. 

My own intuition has not offered me any strong suggestions concerning 
Douglas' question. Douglas has told me he suspects the question has a 
positive answer, but others have the opposite impression. In the absence 
of an idea for attacking the general question, it is natural to try to answer 
the question for specific algebras that might be of interest in their own 
right. I shall describe in the remaining sections of this article what has 
been done along these lines and some of what has been discovered about 
the algebras that have been investigated. 

5. H°° + L£. For E an arbitrary subset of dD, let L£ denote the set of 
functions in L00 that are continuous at each point of E. Davie, Gamelin and 
Garnett prove in [4] that the closed subalgebra of L00 generated by H00 

and L£ coincides with H00 + L£, the linear hull of H00 and L£. In the 
very special case where E = dD one obtains from this, of course, the 
statement that #°° -f C is a closed subalgebra of L00. The result quoted 
above is itself a special case of a more general result from [4] in which the 
unit disk is replaced by an arbitrary bounded open subset of the complex 
plane. 

Davie, Gamelin and Garnett prove, in addition, that H00 -h Lg is a 
Douglas subalgebra by showing that every unimodular function in L£ 
can be uniformly approximated by functions of the form blb2 where b1 

and b2 are Blaschke products whose zeros do not cluster at any point 
of E. The special case of the latter result where E = 0 is due to Douglas 
and Rudin [7]. The more elementary case where E = dD can be found, 
essentially, in [14]. 

6.A^. The real line, rather than the unit circle, provides the natural 
setting for the next algebra we shall consider. Let L^iR) denote the 
Lebesgue space of essentially bounded measurable functions with respect 
to Lebesgue measure on R, and let H^iR) denote the subspace of boundary 
functions for bounded analytic functions in the upper half-plane. We 
define Al to be the closed subalgebra of L°°(/?) generated by H°°(K) and the 
bounded uniformly continuous functions on R. By a theorem of Kober 
[1, p. 249], Ax is the Douglas subalgebra generated by H°°(JR) and the 
complex conjugate of the inner function elz. (Thus, by applying a Cayley 
transformation, one can transform Al into the closed subalgebra of L°° 
generated by /J00 and the complex conjugate of the inner function 
exp[(z + l)/(z - 1)].) 

The algebra Ax arises in connection with the study of certain Toeplitz 
operators; the connection and a few properties of Ax are described in [9]. 
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In some respects A1 is the analogue for R of the algebra #°° + C. For 
example, in analogy with Theorem 4, a function in Al is invertible if and 
only if its Poisson integral is bounded away from 0 in some strip 
0 < Im z < e. 

The Blaschke products (for the upper half-plane) that are invertible in A± 
can be characterized in several ways. If a Blaschke product b is invertible 
in Ai then, by the invertibility criterion just mentioned, the zeros of b 
must tend to oo. If b is a Blaschke product whose zeros tend to oo, then the 
following conditions are equivalent : 
(i) b is invertible in Ax ; 
(ii) b is uniformly continuous on R ; 

(iii) b' is bounded on J?. 
The Blaschke products whose complex conjugates together with /J°°(K) 

generate Ax can also be characterized in simple terms. If b is a Blaschke 
product which is invertible in Al9 then the following conditions are 
equivalent : 

(i) AY is the closed subalgebra of L°°(R) generated by H°°(R) and 5; 
(ii) \b\ is bounded away from 1 in every half-plane Im z > s > 0 ; 
(iii) b' is bounded away from 0 on R. 

7. Bv We return to the unit circle. Let Q denote the subalgebra of L00 

consisting of the functions that are continuous except possibly at the point 
z = 1 and have one-sided limits at that point. Let B± denote the closed 
subalgebra of L00 generated by H°° and Q. The algebra 2^ is studied in 
my recent paper [24]. I began that study in the hope that Bx would fail to 
be a Douglas subalgebra. I had the feeling that the algebras Hœ and C1 

do not "belong together" because a function in H°° cannot have a jump 
discontinuity. Thus, I reasoned, by putting these two algebras together one 
could, perhaps, make something go wrong. 

My intuition was completely misleading : The algebra Bx is a Douglas 
subalgebra. The paper [24] contains a proof of this and of some related 
properties of Bv For instance, an invertibility criterion for Bx similar to 
the one for H00 + C given by Theorem 4 is obtained. The inner functions 
that are invertible in Bt are characterized. They are the Blaschke products 
whose zeros tend nontangentially to the point z = 1 at an exponential 
rate. The Blaschke products whose complex conjugates together with H00 

generate J^ are also characterized in terms of the distribution of their zeros. 
The techniques used in [24] to study B± apply also to the closed sub­

algebra of L00 generated by H°° and the piecewise continuous functions. 
No particular Douglas subalgebras except for the few mentioned in this 

article have been studied in detail. The general Douglas subalgebra has 
also been studied to an extent; for this I refer to [6]. 
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Acknowledgement. I am indebted to Ronald G. Douglas for stimulating 
discussions on much of the above material. 

ADDED IN PROOF August 29, 1972. The question of Douglas mentioned 
at the end of §3 has an affirmative answer. The proof is elementary, given 
the equality QC = L00 n YMO. 
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