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If JR is a ring, and G is a group of automorphisms of R, then RG denotes 
the subring of R consisting of elements of R left fixed by every element of 
G, and is called the Galois subring corresponding to G. In his paper, 
Groups acting on hereditary rings, G. M. Bergman has asked if every Galois 
subring of a right Ore domain corresponding to a finite group is itself 
right Ore. In this note we show that the answer is affirmative. 

Henceforth, let R denote a right Ore domain with right quotient field 
A let G be a finite group of automorphisms, and let G' = exG denote 
the unique extension of G to D. Then, G' & G under the restriction map 

Henceforth, we let G denote a group of automorphisms ofD which induces 
a group of automorphisms of R isomorphic to G under the canonical map. 
We borrow a term from ring theory coined for another use: the Galois 
subring RG will be said to be right quorite in case JRG is a right Ore domain 
with right quotient field = DG. The theorem we prove is slightly stronger 
than that stated in the title. 

THEOREM. If G is a finite group of automorphisms of a right Ore domain 
R, then RG is right quorite. 

Our proof depends heavily on the Cartan-Jacobson Galois theory for 
division rings, including Jacobson's outer Galois theory of an earlier 
paper, and concomitant normal basis theorems of Nakayama, Kasch, 
Tominaga, and the author in the special case when [D : DG] = (G : 1). 

Successive reductions for the truth of the theorem can be made to the 
cases (i) G is an outer or inner group of automorphisms of D (Lemma 1), 
(ii) G is simple (Lemma 1), (iii) R has prime characteristic p dividing 
(G : 1) (Lemma 2), (iv) G is inner (Lemma 4), and finally, (v) G is cyclic 
of order p (Lemma 5, ff.). 

Both (i) and (ii) are obtained as corollaries of the following lemma: 

LEMMA 1. Assume that there is a subnormal series 

(1) G = G 0 =>G 1 =>. . .3G w _ 1 3G m ==l . 
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If the theorem holds for all groups of automorphisms isomorphic to any 
factor group GJGi+u 0 ̂  i: ^ m — 1, then the theorem holds for any 
group of automorphisms isomorphic to G. 

By induction on m, it suffices to consider the case m = 2. By normality 
of G2 in Gl9 the group G induces a group Gx of automorphisms of DGl 

canonically isomorphic to G/Gx. An induction hypothesis on the order 
of the group permits the assumption that RGl is right quorite with right 
quotient field DG\ and the same hypothesis then implies that (RGl)Gl 

= RGl is right quorite, with right quotient field (DGl)G2 = DGl. D 
(i) is obtained as the m = 2 case, with Gx denoting the group of inner 

automorphisms of G. Moreover, (ii) is the case for which (1) is a composi­
tion series for G. 

The outer case. We let Q(A) denote the right quotient field of any right 
Ore domain A. We also let t : D -+ F denote the trace function defined by 
G, where F = DG. The restriction of t to R is a mapping R -+ RG also 
denoted by t. We assume throughout that R is a right Ore domain and 
that G is a finite group of automorphisms. We also let p denote the 
characteristic of JR, possibly p = 0. 

LEMMA 2. If the G-trace function does not vanish on R, then RG is right 
quorite. A sufficient condition for this is f or p to be prime to (G: 1). 

PROOF. TO show that A = RG is right Ore it is required to show for any 
nonzero x,yeA that there exist x^y^eA such that y~*x = x^ï1. 
Since D is the right quotient field of R> there do exist elements xuyx in 
R with this property, and furthermore, 

(2) tix^tiy^)'1 = y~xx 

for any a e R such that t^y^a) / 0. 
Assume ^JR) = 0. By the Galois theory of division rings of Cartan 

[48]-Jacobson [47] (cf. Jacobson [64]), D is a left (and right) vector space 
over F of dimension m ^ n = (G: 1). If ul9..., um is a left F-basis, then 
the fact that yxR is an essential right ideal of R implies that there exists a 
nonzero element beR such that wt - Uibey^R, I = 1,...,m. It follows 
that w l 5 . . . , wm are left F-independent, and, moreover, 

m m 

D = X Fwi = E Fuib = Db = D. 
i = i i = i 

Thus, for any deD, there exist elements dteF, i = 1,.. .,m, such that 
m 

à = S dtwh 
i = l 

and hence, 
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m 

t{d) = £ d,t(wd = 0. 

This proves that t vanishes on D, hence on R, contrary to the assumption. 
(Since r(l) = n, then t vanishes on R only if p\n.) Thus, we have the 
desired equality (2) for some aeR. This proves that A is right Ore. 
Moreover, the proof actually shows that any zeF can be written 
z = t(x1a)t{y1a)~1

9 for some aeR, where xx and yx are elements of JR 
such that z = xtyï *. This proves that Q(A) = F, hence that A is right 
quorite. • 

Let [D:F] denote the left dimension of D over F, where F = DG. 
We say that D has a G-normal basis if [D : F] = (G : 1) and if there is an 
element ueD such that {ug}geG is a left basis of D over F. 

THEOREM 3 (FAITH [58], TOMINAGA [58]). If [D:F] = (G: 1), then D 
has a G-normal basis element w, and hence the G-trace function is nonvanish-
ing. • 

LEMMA 4. If G is a finite group of automorphisms of a right Ore domain 
R canonically extended to an outer group of automorphisms of D, then 
A = RG is right quorite. 

PROOF. As shown first by Jacobson [40] in the case of noncommutative 
division rings (called quasi-fields in [40]), the condition ID.F'] = (G : 1) 
holds whenever G is an outer group of automorphisms of D. In this case, 
the normal basis theorem for noncommutative D is a theorem of 
Nakayama [40] (cf. Kasch [53]). D 

The inner case. If D is a division ring, D* will represent its group of 
units, and [i/, H~] the commutator subgroup of any group H. 

LEMMA 5. Let Dbea division ring of characteristic p, and G a finite group 
of inner automorphisms of D. Then [G, G] contains no elements of order p. 

PROOF. Let C denote the center of D; thus G may be identified with a 
subgroup of D*/C*. If we choose a representative in D for each element 
of G, these will span over C a subalgebra D0 of finite dimension m, which 
we may represent by m x m matrices over C. Clearly, any element 
g e [G, G] may be represented by an element x e [Dg, Dg], and as a matrix, 
x will have determinant 1. Hence if xp e C*, we get 1 = det(xp) = xpm. 
So x is algebraic over the prime field P = GF(p) ^ C, so P(x) is finite, 
hence perfect, hence P(x) = P(xp) £ c. Hence x G C*, and the element 
g G [G, G] represented by x is the identity. • 

Now by our previous reductions, all that remains to prove of the 
theorem is the case where G is a simple group of inner automorphisms of 
D, of order divisible by p. By simplicity, [G, G] is either equal to G or 
trivial. By the above lemma the latter must hold, so G must be abelian, 
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of order p. We now prove that the trace function t is nonvanishing, so 
that RG is quorite by Lemma 2. 

Let a generator of the cyclic group G be represented by x e D*. Then 
xp = a e C*, so Xv — a is the minimal polynomial of x over C (cf. Albert 
[47, p. 188]). Hence [C(:x):C] = p. By the inner Galois theory, C(x) is 
the centralizer of F in D, and [D:F] = [C(x):C] = p = (G: 1), so by 
Theorem 3, t is nonvanishing.1 
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1 Added February 4, 1972. I am indebted to George M. Bergman for showing me that 
my proof of Lemma 5 leads to the stated (stronger) conclusion, and also for pointing out 
that the nonvanishing of / can be proved by a result of Bergman and Isaacs in an unpublished 
paper, Rings with fixed-point free group actions [J. London Math. Soc. (to appear)]. (They 
show that if a cyclic /?-group G acts faithfully on a ring R of characteristic p so that the trace 
function vanishes, then R has nonzero nilpotent elements. Hence in this case, t cannot 
vanish. 


