
BULLETIN OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 78, Number 6, November 1972 

SINGULAR INTEGRALS IN THE SPACES A(B, X) 

BY ALBERTO TORCHINSKY 

Communicated by A. Calderon, April 17, 1972 

In this note we describe the theory of singular integral and multiplier 
transformations in the setting of the spaces A(B, X). First we introduce 
the spaces A(J5, X) combining Theorems A and B below, essentially due 
to A. P. Calderon, with paragraphs 14 and 34 of [2]. Theorem C and the 
example that follows it illustrate the fact that A(B, X) spaces are related 
to Lipschitz spaces of functions and distributions in Rn. (See also [5].) 
Then guided by the translation invariance of an important class of 
singular integrals, described before Theorem D, we define a class of 
operators which commute with representations of Rn into a group of 
(uniformly) bounded linear operators of a Banach space B into itself. 
The continuity of these singular integral operators is proved in Theorem D. 
Theorems E and F concerning multipliers are then proved with the 
assumption that the representations alluded to above are the translations. 
These results were submitted as a thesis at the University of Chicago. 
I would like to thank Professor A. P. Calderon for having had the privilege 
of learning with him these and many other things and to Professor Max 
Jodeit, Jr. for his help throughout my graduate studies. 

The spaces A(£, X). Let {tp}t>0 be a group of transformations of Rn 

where P is a real n x n matrix and 

(*) K l l ^ ' > o < t ^ i . 
This will ensure the existence of a unique value s for which s~pxeSn~1, 
x T£ 0. Thus setting p(x) = s we have that p{tpx) = tp(x) and p(x + y) 
^ p(x) + p(y). (See [4].) We notice that (Px, x) ^ (x, x) is a necessary 
and sufficient condition for (*) to hold. Moreover the adjoint matrix P* 
also satisfies (P*x, x) ^ (x, x) and therefore it determines a function p*(x) 
with similar properties. Now we construct a one-parameter family of dila­
tions vt of a finite Borel measure v on Rn by setting vt(E) = v(t~pE) for 
every v-measurable set E and t > 0. If dv(x) = (f)(x) dx where (j> e !}{Rn\ 
thendvr(x) = t~itP<j){t~px)dx. 

Let B be a Banach space of tempered distributions on Rn such that 
£f(Rn) a B and B = V* for some complex Banach space V. For y e Rn 
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let xy be a representation of Rn into a group of (uniformly) bounded linear 
operators of B into itself, i.e. ||Tyw||B ^ C||M||B>

 s u c h that, for each ueB 
and veV, (xyu, v) is a continuous function of y. We now define \xyu dv(y) 
to be the element weB such that (w,v) = J(tyw,v)dv(y) for all DeK 
Analogously we * define F(y, t) acting on vsV as (F(y, t), Ü) 
= f(Ty+2ti,t;)dvr(z). 

THEOREM A. Let (xyu, v) be a continuous function of yeRn for usB 
and veV. Let v satisfy (i) j]xM| \dv(x)\ ^ CM < oo for all multi-indices M 
of nonnegative integers and (ii) (vtY(x) = v(tp*x) =£ 0 as a function of t > 0 
for any xe Rn — (0). Then there exist functions </>, \\i e ^(Rn) such that 

(w, u) = (xyu, v)(j){y) dy + lim (F(y, t\ v)^t{y) dy —. 

In fact these functions may be chosen so that \J/ e CçiR") vanishes in a 
neighbourhood of the origin and <j) e C^(Rn). 

We would like to construct a similar representation for elements in 
A(B, X). In order to do so we introduce some definitions. 

A lattice X of locally integrable functions in (0,1) is a linear class of 
functions such that there is a norm defined on X with respect to which 
it is complete and if feX and \g\ ^ | ƒ |, then geX and \\g\\x ^ | |/ | |*. 
Given a positive monotone increasing (in the wide sense) submultiplicative 
function p(t) defined on (0, oo) we say that X is a ^-lattice if the mappings 

C* ds f1 ds 
ƒ - f(s)P(t/s)(t/sy- and ƒ - f(sW(t/s)(t/sf-

Jo s Jt s 
are continuous from X into itself for e > 0. We choose to call a f -lattice 
mr-lattice. WesetyX = {feL\oc(0, l ) :y( t ) -y( t )eX}, | | / | U = l ? " 1 / ! * -

Given B and X we denote by X(£) = {F :F is B- valued 
weakly measurable and | |F | | B eX}, ||F||X(B) = ||(||F||B)||X. Finally we 
let Av(£, X) = {ueB: \xyudvt(y)eX(B)}.Normedwith || u \\K = \\ u \\B + 
\\$tyU dvt(y)\\XiB)9 A(B,X) becomes a Banach space in which B is con­
tinuously embedded. 

Let Ak be the class of I}(Rn) functions f(x) such that there exists a 
"polynomial" X I M I ^ M * ) ) ^ SO that 

(i) aM(x) e 1} and 
(ii) ƒ| ƒ (x - y) - X aM(x)yM\ dx = 0(\y\k) for y e Rn. 

THEOREM B. Let keZ+ and let\ibeaBorelmeasure such that (i) jxM dfit(
x) 

= 0 for \M\ < k; (ii) j |x|k \dfi(x)\ < oo. Further let X be a (5-lattice and 
let y(t) be such that p(t)y(t)/f increases for some s > 0 and (i(t)y(t)/tk~ô 

decreases for some k > ô > 0. Then for fixed functions 4>, \jj e Ak and 

file:///ibea
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elements ueB, F(t) e X(B) the integrals 

&(u, F) = Tyu(l)(y) dy+\\ XyF(t)i//t(y)y(t) dy -
dt 

t 

converge absolutely in the B-norm and 

||^(M,F)||AH(B>yX)^C{||u||B+||F|X(B)}, 

C independent of u,F. 

COROLLARY BX. If the hypotheses above hold and y(t) = 1, and \i = v, 
<j), ij/ are as in Theorem A, then y(w, F) maps B © X(B) onto AV(B, X). 
Also if now the measures fi 7e v satisfy both the hypotheses of Theorems A 
and B, then A^B, X) and AV(J5, X) coincide algebraically and topologically. 
This explains the denotation A(J3, X) for these spaces from now on. 

COROLLARY B2. [Cf. [1, paragraph 6.1.]] Let 0 G l}(Rn), supp </> compact 
and let X be an r-lattice, 0 < r < 1. Then \\u — \xyu(j)t{y)dy\BeX implies 
||u — xtPzu\\B e X for any zG Rn. 

We now characterize the spaces A(£,X) when P = diag(a1?... ,aw), 
at G Z+ . (For P = identity see [3, paragraph 14.1].) Put a = (al9..., an). 
Let 

vz(y) = v(y) = to (*)(- iy% - A), 

where 5 is the Dirac measure centered at the origin. Moreover, let 

Att2u = xyudvt(y) = £ ( \{-l)\jt)Pzu. 

We then have 

THEOREM C. Let P, v, AUz be as above and let X be an r-lattice. Further­
more assume that (xyu, v) = (w, xyv\ i.e. the xy are the adjoints of a family 
xy acting on V. This assumption will be kept for the remainder of the note. 
Then for multi-indices M satisfying 0 < r — (a, M) < k we have 

A(B,X) = {ueB:(d/dx)Mxxu]x=0eB and 

sup,,, = ! ||t<a>M)AttZ(d/dx)Mxxu-]x=0\\B G X}. 

Moreover 

||«||A s sup{||(<yax)VL=o||B, V^KAd/dxyz^x-oUmh 
the supremum being taken over zeSn~l, (a, N) < r, (a, M) < r. For example, 
let B = E{R% 1 < p S oo, put xyu = u(A^'y) and X = XrtP n Xs>p 
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where Xrp is the r-lattice trI?(0,1 ; dt/t). If a = ( 1 , . . . , 1,2), z = (z1?..., 
z„_ 1,0) e > - \ z = (0,.. . , 0,1) we obtain A{B, X) = {ue Lp(Rn) : (d/dx)Mu 
eIF{Rn) for M = (Ml9... ,Mn) with Mt^2 for 1 £ î g n - 1 and 
Mn^\and || t2Ar,z(5/ö^)^w|Ur.i>(^)+|| t2Af̂ (Ö/Ö^c)̂ w||̂  ̂ ^^ < co for (a, M) 
= 2 and 2 < r,s < fc + 2}. 77w's is a "parabolic" Lipschitz space of 
functions with the last variable distinguished. 

Singular integrals. Let k G &"(Rn) be defined by k((j>) = p.v.jfc(x)(/>(x) <£x 
for </> e ^(Kw), where fe(x) e L1

loc(R
n - (0)) and it satisfies 

(i) for 0<r<R, \$r<P(X)<Rp(xMx)dx\ ^ C and ƒ,<,(*)<! fc(x)ix 
converges as r -» 0; 

(ii) for JR > 0, Jp(x)<R p(x)|fc(x)| dx ^ CJR and 
(iü) jp(x)>4p(y) |fc(x - y) - fc(x)| dx ^ C. [See [4] and [6].] 
We define for u e B the singular integral Ku as 

(Ku, v) = lim (xyu, v)k(y) dy, for all veV. 
£~*° Je<p(y)<l/e 

The next theorem is better understood if we recall the following remark 
due to Taibleson [7, p. 828]. The Riesz transforms Rt defined by (RtuY(x) 
= Xi/\x\u(x) are not (in the notation of [7]) bounded mappings of 
A(a, p, oo) into itself for p = l,oo. 

THEOREM D. Let A = U*, B = V*, C = W* be Banach spaces of 
tempered distributions such that K.A^B continuously. Further assume 
that £f is dense in VnW and that if c/)(x) is the function of Theorem A 
then ^xyu(f)(y) dy:B -> C continuously. Then 

(i) xzK = Kxz and (xzKu, V) is a bounded function of zeRn for ueA 
and veV. 

(ii) K is a continuous mapping from A n A(C, X) into B n A(C, X). 

The proof uses Theorems A and B. 

Multipliers. In this section we assume that the xy act on 9"{Rn) by 
(xyu, </>) = (w, <j>( • - y)) for all </> G £f(Rn). A function m(x) continuous and 
bounded in Rn — (0) is said to be a multiplier of type (A, B\ where 9> is 
dense in A, if the mapping M defined by (Mw)A(x) = m(x)&(x), usSf, 
satisfies ||MM||B ^ C||MIU- Clearly Mxy = xyM'. 

THEOREM E Let A = U*, B = V* Œ &"(Rn). Let M.U^V be such 
that M*xy = tyM*, M * :A-+B continuously. If xy maps boundedly A into 
itself and B into itself then M* : A(A, X) -* A(B, X) continuously. 

The following is a particular instance of a more general valid fact. 

THEOREM F. Let A, B be as above and let C = W* c t9
5"(^n) te swc/z 

t t o JTyW t̂y) dy:B-+C, where (j)(y) is as in Theorem A..Let £f(Rn) be dense 



1972] SINGULAR INTEGRALS IN THE SPACES A(B, X) 1019 

in AnC and V nW. If m(x) is [n/2] + 1 continuously differentiable in 
Rn — (0) and if f or Q = {0 < s < p*(x) < £ - 1}, where the choice of s 
depends solely on the function i//(x) of Theorem A, we have that 

|M|<[«/2] + l 
\(d/dzfm{tp*z)\2 dz^C fort^ 1, 

then m(x) is a multiplier of type (A n A(C, X\ B n A(C, X)). 
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