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ABSTRACT. Let Ck
n be the group of isotopy classes of differentiable 

embeddings S" c Sn+k. In [4 J A. Haefliger established an isomorphism 
C* - nn+l(G,SO, G*) where Gu is the set of (oriented) homotopy 
equivalences of the sphere Sk~*. In this note, we indicate methods 
which make the calculation of these groups feasible. In particular, 
we determine the first seven nonzero groups in the metastable range. 
We also develop connections between the composition operation in 
homotopy and such geometric operations as spin-twisting knots. 

1. The space of the Haefliger knot groups. 

THEOREM A. There is a space Fk which is 2k — 3-connected and 
nn(Fk) s C*. 

Indeed, Fk is the fiber in the map 

SGk/SOk -* SG/SO, 

induced by the usual inclusions BGk ^ BG, BSOk<± Bso. Alternately, 
Fk is the fiber in the map 

SO/SOk -+ G/Gk9 

induced by the inclusions BSOk <•» BGk, Bso <± BG. 

COROLLARY B. H^(Fk ; Z2) = E(- • • Aj • • •) where I runs over all se­
quences of integers (il9..., it\ satisfying 

( i ) 0 ^ i 1 ^ . . . ^ U ^ 2 ) , 
(ii) i1 = 0 implies t = 2, 

(iii) it^ fc-1. 
Moreover, dim^j) is ix + 2i2 + 4i3 + . . . + l~Ht - 1. {fiere E is 

an exterior algebra on these stated generators.) 

B follows from A on applying the results of [7]. In the same way, it 
is possible to obtain partial information about ff#(Fk;Zp) for p odd. 
Similarly, we can determine H*(Fk ;Z2) as a module over the Steenrod 
algebra ^(2), and H*(Fk ; Zp) over <stf(p) in the range of dimensions less 
than 3fc - 2. 

In this range, H*(Fk;Zp) has one nonzero generator e^-i in each 
dimension 4s— 1, and is zero otherwise. For general p, the <s/(p)-structure 
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is involved. However, for p = 3 we have the concise formula 

^ 4 s _ 1 ) = r sJ(64 s_1 + 4 l .) . 

The structure of H*(Fk ; Z2) is considerably more complex. 

COROLLARY C. In dimensions less than 3k — 2, H*(Fk;Z2) has genera­
tors of the form 

el u {ej ® eO, 

with] ^ k — 1, of dimension 2/ + i — 1 and 

(Compare [8, §3] where a space very similar to this is studied.) 

COROLLARY D. (Fk+1 u cFk) ~
 y£k+1Pk-i in our range. 

Here Pk-± is the truncated projective space p°°/pfc-2. Also, the map 
Fk^> Fk+1 is the natural one which geometrically corresponds to 
compositions Sk a Sn+k c Sn+k+i. D gives a homotopy-theoretical 
proof of the second main result of [4], namely, the isomorphism 

7in(F,,G,)^7rn_,+ 1(SO,SO,_0 

for n ^ 3g —6. 
Finally, passing to rational homology, the map H%(Q(G/SO)) -» H^(Fk) 

is surjective, and we have 

COROLLARY E. r ~ . -,A. ^ 0 

r g, i = 3(4), i > 2k - 3, 
*i(n) ® 6 = < 

[ 0 otherwise. 

In particular, for i = 3(4) and i > 2k-^3,7if(Fk) contains a Z-direct summand. 

The identification of the Hurewicz image of these summands is a 
major problem in further clarifying the homotopy type of the Fk. Some 
results should be possible using the techniques of [3]. 

2. Some calculations. We use Corollary C to calculate the F2-term 
of the Adams spectral sequence for Fk in dimensions less than 3k-3 
at the prime two. (In the range in which the calculations are carried through, 
the p-primary calculations p = 3,5,7... are direct.) The £2-terms for 
p = 2 exhibit a type of periodicity 

ExOf
(2)(H*(Ffc+20,Z2) s Ext%f{H*{Fk\Z2) 
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for t - s < 2r + 2(fe + 2r - 1). The author does not know if this perio­
dicity has any geometric analogue, however. 

These Ext groups are calculated by use of the tables in [6] and the 
spectral sequence techniques in [8, §9]. After evaluating all the differen­
tials we can obtain 

THEOREM F. The first seven two-primary components of the C\ for 
k > 7 are 

(a) for k ES 2(8), 

r* 
^2fc-3+j 

(b)/orfc = 3(8), 
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(g) /or k = 0(8), t/ie groups are isomorphic to those for k = 4(8); 
(h) for k = 1(8), the groups are isomorphic to those for k = 5(8), except 

possibly for j = 3, where, however, the same two groups are the only pos­
sibilités. 
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Taking into account the 3-primary structure, we obtain 

COROLLARY G. Ck = 0 for n < 2/c + 4 if and only if 
(a) k = 0(2) and n = 2fc-2, 
(b) k = 3(4), k # 1(3), andn = 2fc, 
(c) k = 6(8), fc # 0(3), and n = 2k + 2. 

Thus, in these dimensions, a smooth embedding 
f:Mn - (point) c Sw+k 

implies the existence of a smooth embedding 

f\Mn c Sw+k+1. 

REMARK. The ambiguities in F for k = 5(8) and ; = 3 would be 
resolved if we knew the image of the Hurewicz map in dimension 2fc. 

3. Some operations on the Ck. The map Ck>-+ Ck+1 is obtained by 
passing to homotopy in the map h:Fk-+ Fk+l. 

PROPOSITION H. ft* is injective on H\Fk+1\Z^ for i < 3fc-2. In 
particular, 

h*(er u ej ® ej)k+ x = (er u e> (g) e*)*. 

This enables us to obtain information on how far back a particular 
embedding desuspends. For example, let g be the generator [3] of Ck

2k-$ 
with k odd. Then 

THEOREM I. (a) Ifk = 1(4), g is not the suspension of any knot S2fc_3c-> 
S 3fc-4 

(b) If k = 3(4), g is the suspension of a knot g:S2k~3c-+ S3k~4 bttf is 
not the double suspension of any knot s2k~4c+ S3k~5. 

Composition defines an action of 7t̂ (S°), the stable homotopy of 
spheres, on the Ck for k > jn. For example, if rj e n^S0) — Z2 represents 
the nontrivial element, then rj0 constructs from a knot /:Swc-> Sn+k a 
new knot 

fn:Sn+x^Sn+k+1. 

On the other hand, Artin-Zeeman [2], [9] defined the notion of 
twist-spinning knots, and Hsiang-Sanderson [5] generalized the twist-
spinning construction considerably. 

THEOREM J. (a) Composition with rj corresponds to the Artin-Zeeman 
twist-spinning operation. 

(b) Composition with J(a) corresponds to the Hsiang-Sanderson con­
struction for y = [1, a]. (Here, J : n^(SO) -> n^(S°) is the Whitehead 
J-homomorphism [1].) 



1972] ON THE HAEFLIGER KNOT GROUPS 865 

COROLLARY K. (a) Iterating the Artin-Zeeman twist-spinning operation 
four times (for k > 2) always results in a trivial knot. 

(b) The Artin-Zeeman twist-spinning of gk is never zero. The iteration 
is nonzero if and only ifk= 1(4). 
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