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The purpose of this note is to give an elementary proof of the following 
result. 

THEOREM A. Let G be a finitely generated nonelementary Kleinian group 
and let J be an anticonformal homeomorphism ofQ = Q(G), the set of dis­
continuity of G, where J commutes with every element of G. Then J is the 
restriction of an anticonformal, involutory fractional linear transformation 
{that is, J{z) = {az + b)/{cz + d), J2 = 1) and G is either Fuchsian or a 
Z2~extension of a Fuchsian group. Further, the mapping J with the above 
properties is unique. 

We prove Theorem A by reducing it to 

THEOREM B. Let F be a finitely generated Fuchsian group operating on 
l/i and U2, the upper and lower half-planes, respectively. Let fx and f2 

be schlicht functions on Ux and U2, where j \ °y ° fo1 andf2 °y ° f\~ x both 
define the same isomorphism of F onto a Kleinian group G, and fx = f2 

on that part of the real axis R lying in CIÇT). Then J\ andf2 are restrictions 
of the same fractional linear transformation. 

As a corollary to our proof of Theorem B, we obtain the somewhat 
more general 

THEOREM C. Let T be a finitely generated Fuchsian group of the first 
kind acting on Ut and U2. Let fx defined on Ul9 and f2 defined on U2 be 
holomorphic cover mappings where fi°y°fï1 cmd f2°y°fi1 both define 
the same homomorphism of T onto a Kleinian group G. Then G is either 
Fuchsian or a Z2-extension of a Fuchsian group {perhaps of the second 
kind). 

REMARK. Theorem C gives information about certain deformations 
of T, in the sense of Kra [6], where the same deformation is supported 
in both Ul and U2. Nothing is known about the more general case where 
ft and f2 are merely locally schlicht. 
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Using standard techniques in quasiconformal mappings, we also get 
an elementary proof of the following result of Maskit [9]. 

THEOREM D. Let G be a finitely-generated Kleinian group with two 
invariant components. Then G is a quasiconformal deformation of a Fuchsian 
group. 

We start by giving a 
PROOF OF THEOREM B. We denote the map z i-> z by j . Note that we 

have a well defined mapping ƒ: Q(T) -• Q(G); a priori this mapping need not 
be surjective. It projects to a surjective mapping-display f*:Q(T)/r 
-+f(Q(T))/G. Since Q(r)/T is of finite type, f(Q(T)) is a union of com­
ponents of Q(G) and/* is an n-sheeted covering for some n ^ 1. Further­
more,/* | (Ujr) is injective for i = 1,2. Thus n = 1 or n = 2. 

If fi(Ui) n fiiUi) = 0> then G has two invariant connected open 
subsets of its region of discontinuity: namely MU^ and f2(U2)> Thus 
every noninvariant component of Q(G) is an atom (Accola [1]). Since 
finitely generated Kleinian groups do not have atoms (Ahlfors [2]) we 
conclude that 

«(G) = /i(t/i) u f2(U2) u MQiT) n R). 

Thus if MUJ n f2(U2) = 0 , we set 

^ ) = / 2 °7° / r 1 (4 zeMUÙ 

= /i°7°/2-1(4 zef2(UÙ 

= z> **/i(Ui)u/2(l/2), 

and observe that J" 1 ° g°J = g for every geG. 
Since /x and f2 both are equivalent (under the Möbius group) to 

bounded holomorphic functions, by Fatou's Theorem they have locally 
Li (even L^) vertical boundary values. Using the Cauchy integral formula 
it suffices to show that these are the same a.e. Observe that by Maskit 
[10], J is a homeomorphism. Now if/i(w) has a limit as lm w -• 0, then 
either w approaches a point in Q(r), in which case by hypothesis, /2(/w) 
tends to the same point as /i(w); or, since w is schlicht, /t(w) tends to a 
point of A(G), the limit set of G. If/i(w) tends to a point of A(G), then f2(jw) 
= J(/i(w)) tends to the same point. 

If/i(^i)<°> fi(U2) ± 0, then observe that f^U^ is bounded by the 
limit points of G and the points in the image of Q(T) n R, and so /i(C/i) 
= f2(U2). Then fe1 °/x is directly conformai, maps l^ onto C/2, and is 
the identity on Q(T) n R and on the hyperbolic fixed points. Hence, 
fi(Ui) n f2(U2) 7* 0 cannot occur. 
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REMARK. A more direct proof of Theorem B can be obtained by show­
ing that \fi(z) — f2(jz)\ tends uniformly to zero as Imz -• 0 with zeUlt 

This involves an analysis similar to the one appearing in Maskit [10]. 
PROOF OF THEOREM A. We first observe that J2 is conformai and 

commutes with every element of G. Hence (Kra [7] or Maskit [10]), 
J2 = l. 

Suppose there is a component Ax of G with A2 = JA1 # At. Let H 
be the subgroup of G keeping At invariant; obviously HA2 = A2> By 
Accola's remark [1], Ax and A2 are both simply-connected. Choose a 
Fuchsian group T and a conformai map ft : U1 -• Ax which conjugates T 
into G. Define f2 : U2 -• A2 by / 2 = J ° /x oj. Since T is of the first kind, 
by Theorem B, fx and f2 are restrictions of the same fractional linear 
transformation/. Then in A2, J = f°j°f~l; and so J = f°j°f~l 

everywhere. 
We now assume that J keeps every component of G invariant. Then G 

has only one component A, for set 

J*(z) = Jz, ze A, 

= z9 z$A9 

and observe that, by Maskit [10], J* is a global homeomorphism which 
reverses orientation in A, and preserves orientation in the interior of the 
complement of A. 

Let T be a Fuchsian group, operating on Ul9 where fx : Ut -* A is the 
universal covering, and T is the lifting of G; that is, UJF s A/G. Let T* 
be the Z2-extension of T which covers G u J . 

Suppose that no orientation-reversing y*eT* had a fixed (non-
Euclidean) line in l^. Then for every such y*, (y*)2 = yeT, and Av the 
axis of y is invariant under y*. Choose yg to minimize the non-Euclidean 
length of Ay/T. Then since y* projects onto an involution, Ayo/T can have 
at most one double point. One double point would lift to a fixed point of 
some y*. Hence Ayo/T is a simple loop. Since J2 = 1, Ayo projects onto a 
simple loop in A. This simple loop is invariant under J; hence J inter­
changes the two topological discs bounded by the loop. Finally, since J 
is the identity on A(G), A(G) = 0 — contradicting the assumption that 
G is nonelementary. We conclude that some lifting y* of J has a line of 
fixed points in U^; hence J has fixed points in A. 

The set T of fixed points of J must divide A into at least two regions, 
for if not, we could repeat the above argument looking at the universal 
covering of A - T. If there were more than two regions, we could as 
above define J* = J in two of these regions, and J* = 1 elsewhere, to 
get a contradiction. Let At and A2 be the components of A — T. Since 
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g T = T for all g G G, H, the subgroup of G keeping Ax invariant is of index 
at most 2 in G. The group H has invariant open sets Ax and A2, hence Ax 

and A2 are both simply connected. 
Let fa : Ux -> Ax be the Riemann map, and let T = fxHff1 be the 

Fuchsian equivalent of H. Define f2'U2-^A2 by f2 = J°fi°J- By 
Theorem B, ft and /2 are restrictions of a fractional linear transformation 
/ . T h e n J = / o j o / - i . 

PROOF OF THEOREM C. If /i(l/i) n /2(t/2) = 0? then define 

= / i o i ° / 2 - 1 ( 4 ^ / 2 ( i / 2 ) , 

= z, ZGA(G). 

Note ftiUi) and/2(C/2)are both invariant under G, and so, upon addition 
of some isolated points, are both simply-connected. 

Since fdUi), i = 1,2, is, except for countably many isolated points, a 
component of G, if /i(C7i) n f2(U2) # 0 , then (modulo some isolated 
points)/^t/i) = f2(U2). In this case, set 

J(z)=f2V°fi'1(z)9 zefdUJ, 

= z, ZGA(G). 

It is obvious that each of the maps J defined above extend by continuity 
to the isolated points at which they have not yet been defined. 

PROOF OF THEOREM D. By Accola's remark [1], Ax and A2 are both 
simply-connected. Let F1:A1-+U1 be the Riemann map, and let 
^ : G -• T be the isomorphism of G onto the Fuchsian group F given by 
\//(g) = Fx° g° Fï1. Using the Fenchel-Nielsen Isomorphism Theorem 
[5] (see, for example, Marden [8] for a proof) there is a homeomorphism 
F2 : A2 -» U2 with F2 ° g ° F2 x = \//(g) for all g G G. By Ahlfors' Finiteness 
Theorem [2], and Bers' Approximation Theorem [4], F2 can be chosen 
to be quasiconformal. Set 

dF2/dz 

dF2/dz 

= 0, z£A2, 

and let wM (see Ahlfors-Bers [3]) be a quasiconformal homeomorphism 
satisfying 

dw*/dz = fidw^/dz. 
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Then G" = w^Giw*1)'1 is again a Kleinian group and w^CF,-)"1 is con-
formal in (7;, * = 1,2. Hence J = wfl°Fi1 °j °Fi°(wfl)~1 is an anti-
conformal homeomorphism of Q(G") which commutes with every element 
of G". By Theorem A, the group G", which is a quasiconformal deformation 
of G, is Fuchsian. 
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