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Preface and acknowledgements. This essay about some aspects of sec­
tional representation began with an invited address at the 679th meeting 
of the American Mathematical Society in Athens, Georgia on November 
20, 1970 [44]. It has been greatly expanded and elaborated in order to 
provide a survey, at least to some extent, over the state of research in the 
area of sectional representation. A complete survey over this area is out 
of the question at this time; the theory has outgrown the stage in which all 
aspects of its development could have been equally and fairly discussed 
while keeping the length of the discourse reasonable. Thus this is a biased 
report, leaning somewhat towards the question "how to represent a 
(topological) ring of very general type by continuous sections in a canonical 
sheaf or field;" that is, the "one-ring-at-a-time" aspect is much more 
extensively treated than, say, the functorial aspect of sectional representa­
tion theory; and modules, while occurring here and there, stay somewhat 
in the background. Some of the material we present is new, and we 
organize some of the known material in novel form. Some of the content is 
based on earlier joint work with DAUNS; many of the more recent aspects 
of our presentation owe much not only to numerous discussions with 
KLAUS KEIMEL, but also with KWANGIL KOH and SILVIU TELEMAN who 
visited Tulane during the academic year 1970-71. We refer to a volume of 
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Lecture Notes in Mathematics ([54], [92]) which contains an account of 
the sectional representation theory of lattice ordered rings by KEIMEL and 
one of harmonic rings by TELEMAN; existence obviates the necessity of 
going into the details of these special theories in the appropriate places. 
In the compilation of the bibliography and pertinent material I had the 
kind assistance of numerous colleagues, notably G. M. BERGMAN, 

S. D. COMER, J. DIXMIER and his student F. PERDRIZET, B. R. GELBAUM, 

J. KIST, A. G. MEWBORN, C. J. MULVEY, R. S. PIERCE, S. A. SELESNICK, 

R. WIEGAND, W. WILS; many of these provided me with material which 
had not appeared at the time and which hopefully will be available by the 
time this report appears. Again I have to mention KEIMEL in this context 
who indefatigably kept me up to the minute in new references which he 
discovered. 

The work on this survey was supported by an NSF-grant as was some 
of my earlier work in the area. The visiting program at Tulane during 
1970-71 which brought in KOH and KEIMEL and contributed partial 
support to TELEMAN was made possible through a grant by the FORD 

Foundation to Tulane University; the latter visited Tulane as a Fellow 
of the Exchange Program between the Academy of Sciences of the 
Socialist Republic of Rumania and the National Academy of Sciences 
of the United States. 

Introduction. Sectional representation theory, in a nutshell, is concerned 
with the following idea : In order to describe the nature of some algebraic 
or topological structure R (such as a ring or a topological group) one picks 
a family fb:R -> Rb, b e £, of surjective homomorphisms and, forming a 
disjoint union E of the Rb, seeks to endow E and B with topologies such 
that 

(i) the natural function n:E -» B, given by n(x) = b iff xe Rb9 is con­
tinuous; 

1 1 i 
B b 

FIGURE 1 
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(ii) all functions a : B ~> £, for a e R given by â(b) — fb(a) are continuous ; 
(iii) if A and the Rb have a topological structure, then the topology 

induced by E on Rb is the given one. 

If R and all Rb are discrete, then (iii) is void. 
All functions a satisfy the relation nâ = lB and each continuous function 

G\B -* E with no — lB is called a section (of n); the terms "right inverse" 
of 7T or "contraction" would be just as appropriate but have not been 
established in this context. The set r(n) of all sections is a subset of the 
product fI{jR5:b e B} and thus clearly inherits an algebraic structure if R 
and Rb have one ; in general it will also be endowed with a topological or 
uniform structure, even though its selection may be a little less obvious 
because the structure induced from the product is generally not the one 
desirable for the practice. It is indeed a reasonable question to ask what 
one hopes to achieve with such a construction, if it should be possible at all. 

The function a *-• a : R -• r(7i) will be, in general, a homomorphism of 
the category of structures under consideration, and it is easily seen to be 
injective exactly if the family {fb :b e B) of homomorphisms separates the 
points of R ; this property may be considered as a sort of semisimplicity 
condition of R (relative to the fb). Historic reasons justify the choice of the 
name of Gelfand morphism for the map a »-• a. If all the topologies in our 
brief outline are discrete, then r(7t) = [~[{Rb:b e £}, so the Gelfand mor­
phism is just a subdirect representation of R in the traditional sense and it 
now becomes plausible that the introduction of topology into the setup 
serves to sharpen the tool of subdirect representation. The deficiency of all 
subdirect representations, of course, is that the image R of the Gelfand 
morphism in f]Rb is appallingly thin, and with the great discrepancy 
between R andf]Rbmuch of the gain is lost that was perhaps achieved by 
having found factors Rb whose structure is much simpler than that of R. 
With the sectional representation approach we obtain R £ r(7c) and r(7c) 
may itself be much smaller thanf]Rfc: in particularly opportune circum­
stances (of which we will encounter a surprisingly large sample) we may 
even have R = r(n) in which case the theory of sectional representations 
would have rendered a completely satisfactory service. A classical example 
which one might wish to keep in mind is the one of a commutative 
C*-algebra JR with identity and with B being the set of C*-homomorphisms 
fb:R-+ Rb = C. We may then identify E with C x B and n with the pro­
jection on £, give B the weak *-topology and observe that the C*-algebra 
of all continuous functions B -• C is isomorphic to r(7c) under the map 
ƒ -• (b -• ( ƒ (b\ b)). The Gelfand morphism is then the classical Gelfand 
representation, and the Gelfand Naimark theorem states that R = T(n) 
in our current interpretation. 

We will demonstrate that the problem of sectional representation has a 



1972] REPRESENTATIONS OF ALGEBRAS BY CONTINUOUS SECTIONS 295 

very general solution (5.20-21). That it is not, in my opinion, very satis­
factory has the following reason : Firstly, under very general circumstances, 
the case R — r(n\ or even anything approaching it, is rare. In the situation 
of rings, where Â = r(n) occurs frequently for appropriate selections of 
morphisms fbi one has inherent difficulties with those cases which are of 
most interest: the cases in which B is a set of prime ideals and/ ; :R -» R/I, 
I e B, are just the quotient maps. The complications arise from the fact 
that we are given a topology on such a set, namely the hull-kernel topology. 
The canonical solution to the sectional representation problem as outlined 
above, however, will by necessity call for a topology on B which with rare 
but noteworthy exceptions will be different from the hull-kernel topology. 
The hull-kernel topology has proved to be indispensable in so many in­
stances in algebra and analysis, that one would be ill-advised to disregard 
its advantages. The solution, which in all instances, both in algebra and 
analysis, have provided satisfactory if not complete answers, is the modi­
fication of stalks by taking account of the given hull-kernel topology and 
constructing, in a suitable fashion, for each prime ideal I in the given col­
lection B, a possibly smaller ideal ƒ so that the new family of morphisms 
fj\R -» R/I, I e £, yields an entirely satisfactory sectional representation 
over B with its hull-kernel topology. 

In many respects, sectional representation is by no means a recent up­
start. It is natural that forerunners in analysis antedate the earliest 
appearance of sectional representation in pure algebra ; the existence of 
topologies with the properties we described is more likely to be noticed 
first in analytical contexts, and our example of the Gelfand representation 
of commutative Banach algebras is one of the first occurrences of sectional 
representation. The particular trend of thought to use sectional representa­
tion in the study of Banach algebras which started with commutative 
Banach algebras has continued up to very recent developments, as we shall 
see. A slightly different, although related type, of sectional representation, 
we may mention in passing is von Neumann's theory of measurable fields 
of Hubert spaces, specifically designed for the reduction theory of operator 
algebras ; it, too, precedes the genuine algebraic applications of the idea ; 
we will, however, in this article not be concerned with measurable fields 
of Hubert spaces. The ground for sectional representation in pure algebra 
was not ready until topological considerations became a legitimate part of 
algebra; in this particular instance the discovery of the now traditional 
topologies on spaces of prime ideals of rings by Jacobson, Stone, Zariski 
and others paved the way. The first sectional representation theorems were 
of the nature of the Gelfand Naimark theorem in analysis; that is, one 
obtained representations of certain rings or algebras as function rings or 
algebras. The classical example is the Stone representation theorem for 
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Boolean algebras which was later generalized to certain biregular rings by 
Arens and Kaplansky. Gratifying as representations by function spaces are, 
they eventually appear as the trivial case of sectional representation theory 
in the sense that the space E of our outline is just a product. It was then the 
arrival of the concept of a sheaf that in the algebraic context opened the 
way for the treatment of more general situations. In the foundations of 
algebraic geometry as laid by Grothendieck and Dieudonné this approach 
was widely used. The use of sheaves in the structural investigation of 
special classes of (not necessarily commutative) rings is more recent, in fact 
is not really much older than five years. The high degree of development of 
sheaf theory has certainly contributed to the flourishing of the algebraic 
portion of sectional representation theory. Yet in the meantime it has 
fanned out to an extent which makes it impossible at this time to claim 
completeness in a discussion like the one before us. The essentially new 
element in the theory, as we see it, is that one is now in a position to have 
unifying methods which allow us to treat the cases of interest to the analysts 
and topologists simultaneously with the algebraic version as special cases 
of one and the same theory. The sectional representation theory has only 
just passed its beginning stages, and numerous applications are to be 
expected. In particular, the topological version of the theory, which is by 
necessity the most general and more complicated than the plainly sheaf 
theoretic version, has a larger backlog to catch up and one may expect con­
siderable progress not only in the foundations of the theory, but also, and 
in particular, in its applications. 

While it will not be possible to cover all of the work in sectional repre­
sentation theory in its relation to category theory, it must nevertheless be 
pointed out that even past the Grothendieck duality theorem one has now 
a large supply of adjunction theorems based on sectional representation 
due to the work of Mulvey. The first analytical version of such a theorem 
has only recently been established by Takahashi. 

§1. Rings—the main algebraic example. In this section we illustrate 
certain essential features of sectional representation by discussing the 
representation of a discrete ring by continuous sections in a sheaf. More 
general methods will then be more profitably described in later sections. 

Preliminaries. In the beginning we need a formal definition of a sheaf; 
we will therefore set out with two equivalent definitions of a sheaf of sets 
and a sheaf of abelian groups. The latter is the most frequently used con­
cept ; from it one derives readily the ideas of a sheaf of rings (or, equiva­
lent^, a ringed space) which is the one needed for sectional representation 
of rings. 

DEFINITION 1.1. We denote by s/ the category of sets or, respectively, 
the category of abelian groups or, more generally, the category of (left) 
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R-modules for some ring R with identity. Let B be a topological space; we 
denote by (9(B) the topology of B which we consider as small category, 
whose objects are the open sets U c B and whose morphisms are exactly 
the inclusion maps U -» F with U c V. Then an srf-presheaf(i.e. a presheaf 
of sets, resp., abelian groups) is a functor F : (9(B)op -» se, where ?op denotes 
the forming of the opposite category (which is just a device to avoid speak­
ing of contra variant functors). The space B is called the base space. If the 
functor T preserves limits of intersection-closed subdiagrams fyl c* (9(B) 
then it is called an se-sheaf (i.e. a sheaf of sets, resp., abelian groups R-
modules). The stalk Fb of a presheaf (or sheaf) r in b e B is defined by 
Fb = colim FDb where Dh\°U% c+ (9(B) is the diagram of the filter of open 
neighborhoods of b in 0(B). 

We remark that in (9(B), as in any partially ordered set considered as a 
category, the colimit of a diagram is the l.u.b. of the objects in the diagram ; 
thus in (9(B)op the limit of a diagram is exactly the union of the collection 
of open sets in the diagram with the natural inclusion maps (reversed) as 
limit maps. If for an open set U c B one interprets F(U) as the set of local 
sections over U given by the presheaf F, then the continuity condition for 
the functor F means that a matching collection of local sections over some 
family of open sets may be patched to a unique section over the union of 
these open sets. 

There is an alternative, geometric description of a sheaf which for the 
purposes of sectional representation is frequently more useful (in par­
ticular, since it leads to generalizations of the kind that are needed in 
functional analysis). The definition above is more general in that it may be 
phrased for any category se whatsoever ; the actual construction of sheaves 
in general categories, however, may be very delicate if the direct limit is 
more complicated than for sets or abelian groups. 

DEFINITION 1.2. Let n:E -• B be a surjective function which is a local 
homeomorphism (which means that for each xeE there are open sets U 
and V in E and B, respectively, such that xeU and n\ U : U -• F is a homeo­
morphism). Then n is called a sheaf of sets (or a sheaf projection) and 
Eh = 7i" *(b) is called the stalk of the sheaf in b. If all stalks are abelian 
groups and if the function (x,y) »-» x — y:E xnE -* E (with E xnE 
= pullback of {71, n} = {(x, y) e E x £|7i(x) = n(y)}) is continuous, then n 
is called a sheaf of abelian groups. The space E is called the sheaf space. If 
every Eb is a ring with identity 1(b) (resp., a left K-module), then n is a sheaf 
of rings with identity (left R-modules) if also (x, y) ^ xy:E xn E -* E and 
b \^ 1 (b):B -• E (resp. (r,x) H» r • x:R x E -> E) are continuous. A sheaf 
of rings is also called a ringed space. 

Construction 1.3. If n : E -> B is a sheaf (of sets), then one defines, for each 
open set U g B, the set T(7r, U) to be the collection of all continuous func-
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tions a:U -> E with na = 1^; these functions are called sections over U. 
Then, via restriction, r(n, ?) : (9(B)op -* Set is a functor which is rather 
directly shown to be a sheaf in the sense of 1.1. Conversely, if T\(9(B)op 

-» Set is a presheaf of sets, we let E be the disjoint union of the family of 
stalks rb, b e B. If b e U e CJ(B\ let ÀbtU : T(U) -> Tft be the colimit natural 
transformation ; then the collection of all {kbtU(a)\b e I/}, a ET(U\U e 0(B), 
is a basis for a topology on £, relative to which the obvious map n : E -• £ 
is a local homeomorphism and so defines a sheaf in the sense of 1.2. This 
construction carries over to the case of abelian groups, rings with identity, 
left R-modules. There is a natural transformation y : T -» r(7r, ?), given by 
yu(G)(b) = kbv(o) for crer(l/); moreover y is an isomorphism iff T is a 
sheaf. 

A general construction. We now describe a typical construction of a sheaf 
as it arises in sectional representation. 

Construction 1.4. Let B be an arbitrary topological space and A an 
abelian group. Suppose that there is a family {Kb\b e B} of subgroups of A 
indexed by B. For U e (°(B) define V(U) = /1/X(l/) with K(U) = f| {Xb|b G U}. 
If K g 1/ in 0(B) then t/ -> V in tf (£)op and K(l/) g K(K). Thus there is a 
natural morphism of abelian groups T{U) -> T(F) and r:0(#)op-> Ab 
(where Ab denotes the category of abelian groups) is a presheaf. We com­
pute the stalks of this presheaf. For each U e (9(B) we have an exact 
sequence 

1.4.1. 0 - K(U) - A - T(U) - 0. 

The stalk Tb is colim T(U) where U ranges through the filter <%(b) of open 
neighborhoods of b. This colimit is a direct limit and the direct limit functor 
preserves exactness in Ab. Hence, if Kb denotes colim K(U\ U e W(b\ then 

1.4.2. 0-+ Rb-> A^rh-+0 

is exact. 
We may, therefore, identify rb with A/Rb. Now K:(9(B)op -> Ab is a 

functor mapping all morphisms into inclusion maps between subgroups 
of A. A colimit over a directed system is, therefore, just the set theoretic 
union of subgroups of A. Thus 

1-4.3. Rb=\JW)=\JC\{Kt\ceU}. 
beV beU 

The sheaf space E of the associated sheaf is consequently the disjoint union 
of the groups A/Kb\ in order to guarantee disjointness we write Eb = A/Kb 

x {b}. The topology on E is generated by the basic sets â{V\ a e A, 
U e (9(B), where â:B -» E for an a e A is the section defined by a(b) — 
(a + Kb, b)e A/Rb x {b} = Eb. The sheaf projection n:E -» B is given by 
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n(a + Kb,b) = b. We define K(U) = f){f£b\beU} for an open set 
U G 0(B), and observe 

LEMMAJ.5. K(U) = K(U)for each U G (9(B\ i.e. as functors 0(B)olp -> Ab, 
we have ft — K. 

PROOF. The inclusion K(U) g K(U) follows trivially from fcb s Kb. 
Conversely, let a e K(U). Then, by the definition of R(U\ we have aeKb 

for M b e U. Hence a e K(U). 
As a consequence of Lemma 1.5 we have r(U) = A/fc(U). 
An element seT(U) for a presheaf T is called locally zero if for each 

beU there is an open set V with beV ^ U such that the image of s in T(V) 
is zero. (Equivalently, 5 is locally zero if its image is zero in every stalk Fb 

with be U.) With this concept we can rephrase Lemma 1.5 as follows: 
Every locally zero section over U is zero ; or, once more in an equivalent 
fashion : 

LEMMA 1.6. The natural transformation y:T -» r(7i, ?) into the associated 
sheaf is an injection. 

Since T(B) = A/K(B) we have 

LEMMA 1.7. The natural morphism of abelian groups a H* a :A -• r(n9 B) 
has the kernel (~){Kb\b G B}. 

The morphism of Lemma 1.7 is occasionally called the Gelfand morphism. 
Because of the significance of 1.5 and 1.6, we present the same result in a 
geometric version. Let n : E -> B be the sheaf projection and call the sub-
space {(a + Kb,b)e Eb\a G Kb,be B} of E the radical Rad E of E. (Note 
that the radical is not associated with any sheaf of abelian groups, but only 
with sheaves constructed as in 1.4.) 

Then we can reformulate 1.5 as 
LEMMA 1.8. The interior of the radical Rad E is the zero section 0(B). 
PROOF. If x = (a + £ b , b) e Eb is in the interior of Rad £, then there is 

an open neighborhood U of b and a section a : U -• Rad E in r(7c, U\ with 
o(b) = (a + Kb, b). Since n is a sheaf the sections a and a agree on an open 
neighborhood V of b. Thus, by the definition of the radical Rad £, we have 
CJ(C)J= (a + Kc, c) G Kc/Kc x {c} for all ceK i.e. a G f|{Xck ^ 1 = * W 
= K(V) by 1.5; in particular,a e Kb, and thus x = 0(B). 

In general, F will not be a sheaf, i.e. r(7i, I/) will be larger than T(U) 
= A/K(U). However, for the purposes of sectional representation one is 
frequently satisfied with information about the special case U — B: 
Namely, one would like to answer the question 

(Q) When is T(B) = r(7c, B\ i.e. when is the natural morphism a \-+a\A 
-• r(7r, B) surjective? 
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For arbitrary spaces B and arbitrary families Kb one cannot hope for 
any reasonable answer to this problem. However, in the case of rings and 
modules answers are available which may be considered largely satisfactory. 

The ring case. Our setting is the following: Let R be a ring (momentarily 
not necessarily having an identity), let B be a space of proper prime ideals 
with the hull-kernel topology. (Recall that on the space Spec R of all prime 
ideals the hull-kernel topology has a subbasis of sets 

S(a) = {7eSpecR|a<£/}, cieA; 

and a set X £ Spec R is closed iff X = {ƒ G Spec R\f]X^I}.) We call a 
space quasi-compact if it satisfies the Heine Borel property. Let us record 

LEMMA 1.9. A closed subspace X of B is quasi-compact if X satisfies the 
following conditions : 

(X) If la R is a proper ideal with f]X g I then I Ç J Jor some J e X. 
(e) R = (e) + f]X for some eeR. 

(IDEA OF THE PROOF. Forany family #" of closed sets ofX the conditions 
I e Ç]^ and £{pF|J^G J^} c ƒ are equivalent. Indeed the latter means 
P| F g ƒ and thus I e F = F for all F e &. By hypothesis (X), we thus have 
H ^ = 0 iff Z { f y I F e ^ F } = R. The latter implies e e £ { p F | F e & } 9 

hence e = rx + • • • + r„ for suitable rfc e P)^*» ^ * e ^ - This means /? = (e) 

+ p | * E Pl F i + • • • + P F " w h i c h> by (x)> i s equivalent to F t f) • • • f l F * 
= 0 . Thus if ^ is a filterbasis of closed sets on X then f]^ # 0 . ) 

It will be essential to have the following technique which is known as 
partition of identity : 

LEMMA 1.10. Let X be a subspace of B and ee R. If X satisfies (X) above 
then for any finite open cover X ^U1 u • • • u Un of B there are elements 
rk e f](B\Uk\ k = 1 , . . . , w, with e = r{ 4- • • • + rn mod f]X. In particular, 
if 1 G R, this applies to X = B and e = 1. 

(The proof is standard and similar to the one for 1.9: Since X 

n f]Ui(B\Uk) = 0 we have Q * + D ( * W i ) + ' * * + C\(BW*) = R b ? 
(X).) 

We now approach the objective of representing a left R-module M by a 
module of sections. Let I G B and let I • M be the submodule generated by 
all ƒ • m with i G ƒ and me M. Let X7 be any submodule of M with I • M 
ç Kj. We apply Construction 1.4 to B and the family {Kj\IeB} and 
obtain a presheaf r : 0 ( £ ) o p -> Ab* of left /^-modules. Let fi:E -> £ be the 
associated sheaf, X ç f î a quasi-compact closed subspace and <r : X -• F a 
continuous section over X. Recall Fj £ M/K^ say F7 = M/X, x {ƒ}. For 
each ƒ G A" there is an element mteM with <x(/) = (m7 + Kt, ƒ) G Er The 
two sections a and rhj\X of the sheaf H\/A~1(X):IA~1(X) -• AT agree in ƒ, 
hence on a whole neighborhood of I in X. Using the quasi-compactness of 
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X we find open sets Uu . . . ,£/„ in B whose union covers X, and we find 
elements ml9...,mnso that <r\(X n Uk) = mk\(X n Uk). Using the mk(Uk) 
and 1,2 one obtains also an extension of a to a section a over an open 
neighborhood of X. At this point we make the following assumption 
about X : 

(a) Every proper ideal of R containing f]X is contained in 
(y . some ideal of X, and 
* ' (b) there is a relative identity e modulo f]X in R so that e • m 

- m e ƒ • M for ail m e M and I e X. 

Note that (X, e) is satisfied if 1 G R (with e = 1) and if X contains all maxi­
mal ideals of R which contain f]X. According to 1.10 we select elements 
r0 , . . . , rn with rk G f](B\Uk) for k = 1 , . . . , n and with r0 = e — (rt + 
* • • + rn) G QX. We set m = r1-m1 + • • • + rn • mw. We now claim m|X 
= a: We have to show that a(I) = m(I) = (m + £ , , ƒ)G£J for all IeX: 
If ƒ G t/k, then rk • fa — mk)(I) = 0, since a and mfc agree on Uk. If I $ Uk, 
then rfc G f p W * ) S ' and thus rfc • fa - ftk)(I) G ƒ • £, s ƒ • (M/£,) 
S ƒ • M/£ 7 c £ , / £ , ; thus r* • fa - mk)(X) S Rad £ n /T \X) (see 1.8 
for Rad E). Hence J]J. ! rk • fa - mk)(X) s Rad JE n /T *(X), whence 
fa- r0)-<x- m\X = S - i V f a - wk|X) = 0 by 1.8; since r0ef)XeI 
for all ƒ G X, in a similar fashion we have r0 • a = 0. Finally, a(/) - e • <r(/) 
el Ej for all ƒ G X by (X, e)(b). Again as before, using that the interior of 
Rad E is 0(B), we conclude a = e • a. Therefore <x — m|X = fa - e • cr) 
+ r0 • a + [(e - r0) • a - m|X] = 0. 

REMARK 1. We have in fact shown that every continuous section over a 
closed quasi-compact set X ç B with (X, e) extends to a global section in 
the sheaf JX. 

REMARK 2. Since the Sfa), aeR form a basis of (9(B) we could have 
assumed Uk = S(ak\ ak G R. 

REMARK 3. If G is a global section with support X and if m is constructed 
for a\X as in the preceding process, then a = m: We may assume that 
m\Uk = <x|l/fc, and the previous argument shows Yji rk * fa — w*) = 0; but 
fa — e • a) + r0 • (7 vanishes on B\X. 

Let us note that relative identities have the following properties : 
(i) If e is a relative identity modulo I and I <i J, then e is a relative 

identity modulo J. 
(ii) If e and ƒ are relative identities modulo ƒ, respectively, J, then 

* + ƒ — ef is a relative identity modulo ƒ g J. 
Thus, if Y c X cf l , then (X,e) implies (Y,e); further (X,e) and (Z,f) 

imply (X u Z, e + f — ef ). 
DEFINITION 1.11. (i) A collection <D of closed subsets of B is called a sup­

port system if it is closed under the formation of closed subsets and finite 
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unions. (Note that B <£ O would imply that the complements of sets in $ 
form a filter of open sets.) The set of all sections a in a sheaf 7r whose support 
{b e B\a(b) ± 0} is in (D is denoted by r0(7r, B). 

(ii) The sheaf n\E -* B is called O-so/fr if every section X -> E with 
X G O extends to a global section. 

(iii) If R is a ring and B ç Spec K, and if M is a left R-module, then the 
support system on B of all closed quasi-compact sets I g f i with (X, e) 
will be called <D(K). 

Our previous discussion then yields the following result ; 

THEOREM 1.12. Let R be a ring, B a space of proper prime ideals and M a 
left R-module. Then there is a <S>(R)-soft sheaf fi:E -> B of R-moduIes 
associated with any family {Kj\I e B] of submodules Kj of M with I • M <= KI 

which has the stalks Ej £ M/K, with Kt = [jIeU f]{Kj\J € U} {where U 
ranges over the hull-kernel neighborhoods of l\ and the Gelfand morphism 
m H>m:M -> r(/i, B) given by m(I) = (m 4- KI,I)eM/Kl x {ƒ} has the 
kernel f]{Kj\I e B}; its image contains r0(/?)(/i, B). 

The following corollary perhaps illustrates this result more poignantly : 

COROLLARY 1.13. Let R be a ring with identity and B a space of prime 
ideals containing all maximal ideals. If M is a left R-module and fi:E -> B 
the sheaf of R-modules in 1.12, then the sequence 

0 -+ f]{Kj\I e B) -+M-+ H/i, B) -> 0 

is exact and JX is O-so/f for the collection <& of all closed subsets of B. 

In view of the special nature of the hull-kernel topology we can express 
the submodules Kj in an alternative version : 

1.12.1. Kj = \JapI f){Kj\a$ J},where a ranges through elements of R. 

We apply the theorem and its corollary to the special case that M = R. 
For any subset A of the ring R we call the set {ƒ e B\A £ /} the support 
S(A) of A (in B); if we write S(a) in place of S({a}\ this agrees with previous 
notation. 

We observe that I • M = IR c ƒ. We take Kt = I; and in place of Kj 
we simply write /. Thus 

1.12.2. I=Uf)S(a\ aeR. 
afl 

In order to describe / in alternative ways we prove the following lemma, 
which is due to KEIMEL: 

LEMMA 1.14. Let B be an arbitrary collection of prime ideals in a ring R, 
let I be an ideal and A a subset of R. Then the following conditions are 



1972] REPRESENTATIONS OF ALGEBRAS BY CONTINUOUS SECTIONS 303 

equivalent : 

(1) ƒ = f]S(A). 
(2) I is the largest ideal with AI ç f]B. 
(3) I is the largest ideal with IA ^ f]B. 
(4) / is the largest ideal with AI + IA g f]B. 
(5) I is the largest ideal with (A) n I <= f]B. 

REMARK. Recall that f]S{A) = f]{I\A £ I) by 1.5. 
PROOF. Assume (2), take PeS(A). Now AI c P|£ implies v47 s (/!)ƒ 

ç P|B ç P o n one hand; from P G S ( / 1 ) we have (A) g P on the other. 
Since P is prime, then I ç P. Hence / ç H ^ ^ ) - Converse inclusion: If 
P G £ and A $ P, then P G S(/l), and so A(f]S(A)) ç= f)S(/4) ^ P; if, how-
ever, A ^ P then /Kf|S(^)) ^ ^(fl^-4)) ^ p- Consequently A(f]S(A)) 
c f]B, and thus f|S(4) ^ '• T h i s shows (1). 

Assume (1). If P G B , then PeS(A) implies AI c ƒ = f|5(/4) £ p, and 
P$S(A) implies ,4 ç p, hence AI ^ PI ^ P; thus /4/ ç f)£. Suppose 
that /I J c f]B; then (A)J c P for all P G £, in particular for all P G S(/l); 
but for these we have (A) <£ P and so J g P since P is prime. Hence 

J ç f)S(/l) = 7- T h i s s h o w s (2)-
Since (1) is completely symmetric, we also have the equivalence of (1) 

and (3). Thus (1) also implies (4), but (4) implies (2). Since AI ç (A) n /, 
then M ) n / £ f) B => AI g Ç)B=> ((A) n I)2 s (^)7 g f|fî; b u t K / 0 B 

is semiprime and thus does not contain any nilpotent ideals, whence 
(A)nI^f]B, thus (A)n IS f)BoAI c p |£ , and the lemma is 
proved. 

We will call the ideal I of 1.14 the annihilator of A modulo f]B and 
write / = Ag. If A = {a} we abbreviate {#}£ to a^. The ideal P)B will be 
called the B-radical, written f]B = B-Rad R. If B is the space of all maxi­
mal ideals we write B = Max R. 

THEOREM 1.15. Let Rhea ring, B a space of prime ideals, and O the support 
system of all subsets X ^ B satisfying 

(a) X is closed ; 
(b) there is a relative identity eeR for f]X; 
(c) any ideal I of R with f]X ^1 is contained in some Jel. 
Then there is a sheaf p:E -+ B of rings with stalks Ej = R/Ï x {ƒ} 

^ R/Ï with Ï = \JafiaBi cieR such that the following conditions are 
satisfied : 

(i) The ring morphism a t-+a:R-> T(p,B) with a(I) = (a + 1,1) has 
B-Rad R as its kernel, and its image contains T0(p, B). 

(ii) The sheaf p is O-so/f. 
Note that all X G<D are quasi-compact, and that (c) is automatic if Max R 

£ B. 
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Again the resulting representation theorem for rings with identity shows 
more clearly what goes on : 

COROLLARY 1.16. Let R be a ring with identity and B a space of prime 
ideals containing all maximal ideals. Then there is a sheaf of rings with 
identity p:E -> B with stalks Et — R/I with I = \JapiaB> 0 £ # such that 

(i) the sequence 0 -• B-Rad R -* R-+ T(p, B) -• 0 is exact, 
(ii) the sheaf p is <t>-soft for the set Q> of all closed subsets of B. 

Recall that a ring R with identity is called semiprime if the prime radical 
(Spec K)-Rad R = QSpec R is (0) with the space Spec R of all prime ideals. 
We immediately obtain the following representation theorem for semi-
prime rings : 

THEOREM 1.17. Any semiprime ring R with identity is isomorphic to the 
ring of all global sections in a sheaf p:E -> Spec R of rings whose stalks are 
given by El s R/I, I = [japI a1 where a1 is the largest ideal annihilated by a 
on the left and right. 

A ring is called semisimple, resp., strongly semisimple, if the Jacobson 
radical (Prim R)-Rad R = QPrim R with the space Prim R of all primitive 
ideals (resp. the strong radical (Max R)-Rad/? = P)MaxR)is (0). We 
immediately derive the following version of the representation theorem : 

COROLLARY 1.18. Any semisimple(resp., strongly semisimple) ring R with 
identity is isomorphic to the ring of all global sections in a sheaf p:E 
-• PrimR (resp., p:E -* Max R) whose stalks are given by Et £ R/I, I 
= [japI a1, where a1 is the largest ideal annihilated by a on the left and 
right. 

Let us introduce the following definition : 

DEFINITION 1.19. For any ring R and any space B of prime ideals denote 
by St the sheaf T(p, !):(P(B)op -* B which we canonically constructed in 
1.15. For any left R-module M we denote by Jt the sheaf T(p, ?): &(B)op 

-» B, where p is the sheaf constructed as in 1.12 with Kt = I • M. 
It is now easily observed that there is a bilinear sheaf map 0t x , # -» € # 

which is defined as follows: Let U G (9(B) and (a, r)eâi(U) x J/(U) then 
a • T € J((IJ) is defined by (a • x)(I) = a(I) • x(I) where the scalar multipli­
cation p~l(I) x p~ l(l) -• p~ l(l) in the stalks over I is well defined by the 
prescription (a + /) • (m + (I • M) ~= a • m + (/ • M)" (indeed one has to 
check that, firstly A • (ƒ • M)~ s (ƒ • M)~ which is trivial because of the 
fact that (ƒ • M)~ is a submodule, and, secondly, that / • M s (ƒ. M)~ 
which is perhaps not trivial, but nevertheless straightforward from the 
definitions). This bilinear map makes Ji(V) into a left ^(l/)-module. 
The geometric version of the scalar operation of 01 on Jt is given as 
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follows : Let p :E -• B and \i :G -> B be the sheaf projections of ^ and Jf, 
respectively.Let p xBfx:E xBG -• B(withE xBG = {(x,y)|p(x) = M )̂}) 
the product sheaf projection ; then there is a continuous map E xBG -> G 
which is bilinear on stalks and makes each stalk GI = M/(I • M)~ into 
a left ^//-module. 

DEFINITION 1.20. Let 0t be a sheaf of rings with identity and ^ a sheaf of 
abelian groups. We say that Ji is a left ^-module if there is a bilinear map 
0t x Jl ^ Ji which makes each ^ ( t / ) into a left ^((7)-module. 

With this convenient definition we have 

PROPOSITION 1.21. For any ring R with identity and any space B of prime 
ideals containing the maximal ideals and for any left R-module M we obtain a 
left $-module Jt whose properties are given in Corollaries 1.13 and 1.16. 

A second construction for rings. The ideas of 1.14 motivate a slightly 
modified construction of a sheaf associated with an R-module, M. For a 
subset A g R, let A1 = {m e M\(A) • m = (0)} be the largest submodule of 
M annihilated by A. For {a}1 we write a1. Since a1 + b1 ç (ab)1, the 
family {aL\a $ 1} is directed relative to g for every prime ideal ƒ ; therefore 
/ = (J^7 a

1 is a submodule of M. If m e I, there is an a $ I with m e a\ and 
a1 ç J for all J with a £ J, i.e. J e S(a). Then we can construct a sheaf 
jn'.E' -> B also written .#', where E\ ^ M/7 (say £; = M/Ï x {ƒ}) and 
H\m + ƒ,/) = ƒ; the topology on E' is the finest making all functions m:B 
-• E' with m(7) = (m + /, ƒ) continuous. The R-module morphism 
tn h*m:M -+ r(//, B) has the kernel (J{/|7 e£}. Suppose now that me I 
for all ƒ e B. If every annihilator ideal of a cyclic module in M is contained 
in some ideal of £, then the annihilator ideal of R • m is contained in some 
7e£. But me P){J|Je£} £ ƒ, so there is an a$I with m e a1, whence 
(a) - m = (0). Then (a) is in the annihilator of Rm and thus « e (a) £ /, a 
contradiction. Thus we have the following lemma, due to KOH : 

LEMMA 1.22. Let M be a left R-module such that every annihilator ideal of a 
cyclic submodule Rm <= M is contained in some ideal of B. Then 
m \^m\M -» T(/i', B) is injective. 

In general, the image of M -• r(ju', B) will not contain rO(J0(/i', B). How­
ever, if we introduce the subsheaf Jt" of M' whose sheaf space is the 
interior of (J{ ƒ • (M/Ï x {I})\I e £}, then the method used in the proof of 
1.12 will show that the image contains r^{R)(^\ B) modulo M'\B). 

In particular, we have the following result : 

PROPOSITION 1.23. Let R be a ring with identity and B a space of prime 
ideals with Max R Ç= B. Let M be a left R-module. Then there is a sheaf Ji' 
of R-modules over B with stalks isomorphic to MjL where I = [japI a1, aeR, 
and where a1 is the largest submodule of M annihilated by a. The Gelfand 
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morphism m v-*m:M -> M\B) is an injection. Let Jt" be the subsheaf of Jt' 
whose sheaf space is the interior of [J{I • E\\l e £}, where E' is the sheaf 
space of Jt'. Then Jt'(B) = M + Jt"(B) and M s M. 

The most important case, however, is the case that M = R. Then a1 is 
the largest ideal J of R such that (a)J = (0). Thus a1 <= 4 (see 1.14 ff.); 
if jB-Rad R — (0), then a1 = a^. It follows that / = [japI a1 is contained in 
/ = \JafiaB- Let us now denote by 3t' the sheaf p':E'-*B with stalks 
Ej = R/7 x {ƒ} constructed above. The Gelfand morphism R -» T(p', B) 
= PÂ\B) is then injective by 1.22. The quotient morphisms (pj :R/I -• R// 
induce a sheaf morphism cp\$' -> â? which may be considered as a local 
homeomorphism cp:E' -> E of the respective sheaf spaces with p' = pep. 
Then (p maps (J{7 • £;|/ E B} onto the radical Rad E = (J{//ƒ x {/} \I e B] 
of p ; since cp is a local homeomorphism, the interior of the former space is 
then exactly cp~x(9(B) = (J{//7 x {/}|/eB} in view of 1.9. This interior 
is the sheaf space of a subsheaf 01" o\0t\ and 0 -* M" -• 01' -> 0t -• 0 is an 
exact sequence of sheaves of rings. 

While in general we cannot say very much about the image of R in 0t\B) 
there are certain conditions under which additional conclusions may be 
drawn. We discuss briefly one such set of conditions. In KEIMEL'S Lemma 
1.14 together with 1.5 we had the conclusion 

1.24.1. Ai = f){ï\A $É ƒ} for all A g R. 

We now postulate the following condition : 

1.24.2. A1 = f]{I\A $ 1} for all A g R. 

Notice that a $ I implies a1 ^ / by the definition of ƒ ; now A £ I implies 
the existence of an a G A\I, hence AL ç aL £ /; thus the inclusion Q is 
always satisfied in 1.24.2. Furthermore, A1 = P){öi1|öfG A}; hence 1.24.2 
is in fact equivalent to 

1.24.3. Otflat^^a1 forallaeR. 

Suppose that R has an identity, whence B is quasi-compact. Now let 
(T : B -• E' be a section. By the usual compactness argument which we used 
in the discussion of 1.12 we find elements ak, mk, k = 1,. . . , n, in R such 
that with t/fc = S(ak) we have <x|£/fc = mk\Uk9 and that B ç Ux u • • • u Un. 
Because of the latter relation, if we assume that every proper ideal of R is 
contained in some ideal of B, it follows that R = (a{) + • • • + (an). Thus 
the identity 1 may be written in the form 1 = rx + • • • + rn with rk e(ak) 
for k = 1,.. . ,H. 

We define a = jyw, + • • • + rww„ and claim â = a. Indeed, firstly we 
observe that (mt - mfc)(J) = a{l) - a{I) = 0 for ƒ e S(ak) n S(a,) 
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= «((^(fl,)); hence m, - mke f){I\I eS^a,)^))} = [(^(a,)]1 by hypothe­
sis 1.24.2. Thus {ak)(ai)(mi — mk) = (0) and therefore (ak)(a — mk) 
= M d ? rfym - **)) = (0). 

Hence a - mk e ak e I for every / e S(ak) by the definition of /. If we now, 
finally, take an arbitrary IeB, then l€S(ak) for some k and we have 
(â - *)(ƒ) = à(I) - a(I) = à(I) - mk(I) = 0. 

It is not entirely clear how this process should be generalized in the case 
of the absence of an identity in such a fashion that relative identities might 
serve in a role analogous to the one that had in 1.15. 

Let us remark that now in view of the faithful representation of R in 
M'(B\ condition 1.24.3 may be reinterpreted as follows: 

We write Rad E' = \J{I/Ï x {/}|/ e B} £E and call {IeB\a(l) 
<£Rad£'} the quasi-support of a global section oe$'(B). Thus 1.24.3 is 
equivalent to 

1 ?4 4 ^ o r a> b,c 'm R, iî c vanishes on the quasi-support of â, then 
abc = 0 (i.e. abc = 0). 

Note that unlike the support, the quasi-support is not closed. The fact 
that c vanishes on the quasi-support of â may be expressed as quasi-supp â 
n supp c — 0 . 

The key theorem. We now have the following key theorem. 

THEOREM 1.24. (a) Let R be a ring and B a space of prime ideals. Then 
there is an exact sequence 0 -» (%" -> 01' -> 01 -• 0 of sheaves of rings where 
3ti = ///, St\ = R/l ®l = R/I with I = [j^ a\ I = [JapI fli, where a1 

(resp. tfg) is the largest ideal J of R with (a)J £ (0) (resp. f]B). If for every 
aeR there is an IeB with a1 £ ƒ, then we have a commutative diagram 

o - n 

0 0 0 
1 I I 
B -+ R ->R/()B-

g g 

0 - 0t'\B) -r* 0t\B) -» ®(B) ->0 

with exact rows and columns. The image of g contains r^R)(p, B) {see 1.11), 
and r^R^p', B) E im g' + im i. 

(b) If R has an identity and B contains Max R then g is an isomorphism 
and the left square in the diagram is a pullback and pushout (i.e. ker i n 
ker g' s f]B and im i + im g' = &\B)). 

(c) If under the hypotheses of (b) we have the additional condition that 
a1 ^(~){ï\a 41} for all A ^ R, then g' is an isomorphism, too; equivalently 
g" is an isomorphism. 
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The following example illustrates that not much more improvement 
over 1.24 even in (b) and (c) may be expected. Let K be a field and R the 
ring of all matrices a of the form 

r. .-i 
Lo wj 

Then Spec JR consists of two isolated points I and J, where I contains all 
elements with w = 0 and J those with u = 0. The radical is I n J, i.e. the 
set of all a with u = w = 0. Since / and J are isolated, then with B = Spec R 
we obtain / =* ƒ and J = J, and thus /?// = R/J = X, «(B) = K x K. 
Straightforward computation shows that I1 = J = (0), but that J 1 = / 
= ƒ (which illustrates that A1 is defined asymmetrically for A c R). Thus 
«'(B) = K x R and «"(B) = J. Hence «"(B) is not the radical of »\B) 
and R ^ «'(#)• Note that indeed condition 1.23.3 is violated with a - [£ o], 
since then a1 = ƒ, whereas there is no P e Spec JR with a $ P, whence 
n{P |ae /} = R £ / = fl1. 

In §2 we will see that 1.24.3 is satisfied for commutative rings with 
B = Spec R. 

Sheaves of local rings. We now discuss the question under which circum­
stances the stalks of the sheaf « are local rings. For a space B of prime 
ideals of a ring R the hull h(A) = hB(A) (relative to B) of a subset A ^ R 
is the set {I € B\A c ƒ}. Recall / - (Jafl f]S(a) = (J*/ ** a nd / = \Jafi a\ 

LEMMA 1.25. Let B c SpecR. 77iew 

fca(/) = f]{Ü\U a neighborhood of I in B} = f){S(ay\afI} 

= 0{M4)I^/} 
and /iB(J ) = pj l^a1)^ £ ƒ} (all hulls and S(a) taken relative to B). 

PROOF. We have J G h{ai) iff ai £ J iff 0 S M ^ J (ty U 4 > i f f J e s(fl)~ 
for all J G B. This is the case for all a 4 I iff J G fc(f). Since the S(a\ ail 
form a neighborhood basis for ƒ in B, the first chain of equalities is proved. 
The second equality is similar. 

We will call a ring local if it has exactly one maximal proper ideal con­
taining all proper ideals (note carefully that some authors postulate an 
identity and that the unique maximal ideal is the set of nonunits). Thus, if 
R is a ring then R/I is local iff Hî Spec/?(<*)~ n Max R\a <£ 1} is singleton. 
Further R/Ï is local iff C){h$ptGR(ax) n Max R|a 41} is singleton. 

DEFINITION 1.26. We say that the inclusion X -> Y of a subspace of a 
topological space is a Hausdorff embedding if two different points of X 
have disjoint neighborhoods in Y. 

We are now in a position to prove the following 
PROPOSITION 1.27. Let R be a ring and B a space of proper prime ideals. 
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Assume that B contains all M e Max R for which there is an I eB with 
J ç M ; then the following conditions are equivalent : 

(a) f){S(a)~\a $ 1} n MaxR is singleton for all leB, where S(a) 
= {J e Spec R\a$ J). 

(b) 0t is a sheaf of local rings. 
(c) For each I eB there is a unique n(I) e B n M a x R with I £ fi(I) and 

B n Max R -• Spec R is a Hausdorff embedding. 

PROOF. By the above (a) <=> (b). Suppose (a). Clearly, /i is well defined. If 
M,NeB n Max JR and if M # N, then there is an a $ M such that 
N$S(a)-; thus (c). Suppose (c). Let IeB and N e B n M a x R with 
N ± \A}\ Then there is a closed neighborhood U of //(/) in Spec R not con­
taining N; there is an a £/*(/) such that S(#)~ £ I/, and I eS(a) because 
of ƒ c /*(ƒ). Hence AT is not contained in the intersection of all closed 
neighborhoods of ƒ in Spec R. This proves (a). 

In particular this yields the following result of KOH : If B is contained in 
Max R then 0t is a sheaf of local rings iff B is Hausdorff. 

If the conditions of (a), (b), or (c) of 1.27 are satisfied, then there is a well-
defined retraction \x\B -» B n Max R, where \x{ï) is the unique maximal 
ideal containing /. This function may not be continuous; one can show, 
as KEIMEL and the author did in [45], that it is continuous if every point 
I e B n Max R has a basis of closed neighborhoods in B ; such maximal 
ideals are called regular. What we do know on the basis of (a) is that for any 
/ e B n Max R, the closed neighborhoods of ƒ intersect in {ƒ}. If B is quasi-
compact, then this suffices for ƒ to be regular. Under these circumstances 
every continuous function of B into a Hausdorff space factors through \i\ 
since B n Max R is a maximal Hausdorff subspace of B, then \i is the 
universal Hausdorffization and, because of the compactness of B n Max R 
under our circumstances, in fact the Stone-Cech compactification. We 
may thus add to 1.27 the following additional 

REMARK. If the hypotheses and the equivalent conditions (a), (b), (c) of 
1.27 are satisfied and if, in addition, B is quasi-compact, then \i\B ->B 
n Max R is a continuous retraction and is, in fact, the Stone-Cech com­
pactification of B. 

The example following 1.24 shows that 3/1' need not be a sheaf of local 
rings even if R has an identity and B = Max R is Hausdorff. In §2 we will 
see that for a commutative ring R with identity, 39' is a sheaf of local rings 
iff 3t is one. 

It should nevertheless be noted that, from an algebraic point of view, 
the ideals / = \Jafl a

1 with the annihilator a1 of a in R are generally more 
likely to yield local rings R/Ï than the ideals / (but recall that a^ = a1 if 
f]B = (0)!): Indeed suppose that J is an ideal of R such that R/J is a local 
ring, with maximal proper ideal //J, and suppose that every proper ideal 
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ofR is contained in a maximal proper ideal. If a $ ƒ, then by this hypothesis, 
the ideal (a) + J cannot be proper, since I is the only proper maximal ideal 
containing J. Hence R = (a) + J. If the local ring R/J satisfies (R/J)1 = 0 
(which is the case if it has an identity, notably if R has an identity), then 
a1 Ç J . Hence we have the following observation, due to KOH [57]: 

If every proper ideal of R is contained in a maximal one, and if J <= ƒ are 
ideals such that R/J is local with maximal proper ideal //./ and with 
(R/J)1 = 0, then / ç J. In particular, if R/Ï is local, then ƒ is the unique 
minimal ideal J of R in I such that R/J is local. (Such ideals are called 
I-primary.) 

Teleman calls a ring R harmonic, if B = Max Mod R (the space of maxi­
mal modular ideals ) is locally compact Hausdorff and if for each I e B 
there is a neighborhood U of I in B such that there is an identity e of r 
modulo any J e U. 

If R has an identity, it is harmonic iff Max R is compact Hausdorff, and 
in any case B ç Max Mod R is locally compact Hausdorff if R is harmonic. 
Tcleman has given a thorough theory for the sectional representation of 
harmonic rings, for which his Tulane Lecture Notes are an excellent source 
of reference [92]. KOH [58] calls a ring R strongly harmonic, if for any pair 
/„J of different maximal modular ideals of R there exist ideals /', J' in R 
with VJ' = (0) and I' £ /, J' £ J. This is clearly tantamount to saying that 
there is an element a $ I with a1 £J. Thus a ring R is strongly harmonic iff 
for different maximal modular ideals / and J we have I £ J. Then 
B = Max Mod R is Hausdorff, and the sheaf 3t' is a sheaf of local rings in 
the sense that 0t'x = R/I has the unique maximal modular ideal ƒ//; by 
preceding comments, / is then /-primary. The particular feature which 
distinguishes strongly harmonic rings in the context of sectional repre­
sentation, however, has been observed by KOH [58] : If B = Max Mod R 
and X g 5 i s compact, then for any I$X there is an ideal A of R with 
X <= S(A) and A1 £ I: Indeed if I$X and JeX then there is an a3$ I 
with J e S(aj) by definition of strong harmonicity. By a compactness argu­
ment we find ax,...,an$l such that X ç S{a\) u • • • u S{a„)\ take 
/!=<!} + ... + oi, then X c S(4) and (a^ • • • (an) ^ A1 ^ I. Now sup­
pose M € £ and (°) {ƒ | ƒ e AT} £ M. If M were not in X, then by the preceding 
we could find an ideal A with AT E S(A) and /I1 g£ M;if/EAMs arbitrary, 
then A <$ I, hence there is an aeA\I, whence A1 ç= a1 ^ ƒ. Thus /I1 

<= Pj{ JT| / G Ar} c j \ | , a contradiction. Therefore, for any compact X ç B 
we have 

1.28.1. X = h(Ç){f\I G X}). 

This enables us to produce exceptionally good partitions of identity: 
If X ç ( / , U ' " u ( i B is a finite cover of X by open sets of B, define 
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Ik = f]{I\IeX\Uk}; suppose that e is an identity modulo f]X and 
assume condition (X) of 1.9. Then, as in 1.10 we obtain elements rk e Ik such 
that e = rx + • • • -f rn mod f]X. 

With such a partition of identity it is an easy exercise to show that every 
continuous section over X in the sheaf 0t' is the restriction of a section of 
the form r,reR. Moreover, if R has an identity, the same argument shows 
that the Gelfand morphism is surjective. One thus obtains the following 
theorem : 

THEOREM 1.28 (KOH). A ring with identity is strongly harmonic if and 
only if the sheaf PA' over the space Max R of all maximal ideals is a sheaf of 
local rings with identity over a compact Hausdorff space. Under these circum­
stances R is isomorphic to &'(Max R) under the Gelfand morphism and the 
sheaf 0t' is <&-soft for the support-system d> of all closed subspaces of 
MaxK. 

Once it is established with TELEMAN, that in a sheaf of local rings with 
identity over a compact Hausdorff space the base space is naturally iso­
morphic to the maximal ideal space of the ring of global sections, it is not 
difficult to observe that, conversely, the ring of global sections in any 
O-soft sheaf of local rings with identity over a compact Hausdorff space is 
strongly harmonic (TELEMAN). 

If we very briefly turn back to the key Theorem 1.24 (and the following 
example) we can rephrase in essence KOH'S Theorem 1.28 by saying that 
for strongly harmonic rings just as in the case of 1.24(c), g' as well as g is an 
isomorphism; equivalently, g" is an isomorphism; this we can express by 
saying that, for a strongly harmonic ring R with identity and the space B 
of maximal ideals of R, the "subring ^"{B)" of 01'(B) is exactly its strong 
radical. Outside 1.24(c) and outside the commutative case (to be discussed 
in §2) this is the only instance known to me where, perhaps somewhat 
mysteriously, the radical shows up identifiably in the standard sheaf 01'. 
We know that in the sheaf 01 it never can. 

Teleman has applied sectional representation techniques to various 
classes of harmonic rings. As an example only let us mention the class of 
von Neumann regular rings which are continuous (i.e. whose lattice of 
right principal ideals is continuous ) [87]. In these rings Max R is Hausdorff 
embedded into Spec K, and if Z denotes the center of K, then M i-> M n Z : 
Max R -• Max Z is a homeomorphism [87]. Since such rings are strongly 
semisimple, 0t' = 0t and R is isomorphic to ^£(Max R), and 0t is a sheaf 
of local rings over a Boolean space, since Max Z is a Boolean space as we 
shall see in 1.30 and 1.31 below. 

As a next step for further specialization we discuss the relation / = I for 
a prime ideal I e B. Recall that a topological space is zero dimensional if its 
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topology has a basis of open and closed sets. Clearly every zero dimensional 
T0 space is Hausdorff and regular. 

PROPOSITION 1.29. Let Rbe a ring and B a space of prime ideals. Let I e B. 
Then the following statements are equivalent : 

(i) i = i. 
(2) For all as R the statements as I and a^ £ I are equivalent. 
(2') For all a e R the statements I e S(a) and I e S(a) are equivalent. 
(3) Every h(a\ ael is a neighborhood of I in B. 

These conditions imply 
(4) I is a minimal element in B. 

The space {I e B\I = 1} is a zero dimensional Hausdorff space. 

PROOF. For the proof we write A1 in place of Ag. 
(1) => (2): Let ael, then a e Ï by (1); thus there is a b <£ I such that a e bl. 

This implies beb11 <^ a1 and therefore a1 $ I; since I is prime the impli­
cation a1 £ I => (a) £ I is trivial. Hence (2) is established. (2) => (1): Let 
a e /. By (2) this implies a1 £ I. Hence there is an element be a1 with b$ I. 
But then a e a11 Ç b1 s I (because of b$ I). Hence (1). Since IeS(a) is 
equivalent to a 41 and (in view of f]S(a) = a1 by 1.14) a1 <= / is equivalent 
to / e S(a), (2) is equivalent to (2'). Finally, (3) is equivalent to 

(3') For all a e I we have I e interior of h(a). 

But ƒ e interior of h(a) is equivalent to / £ S(â) and ae I is equivalent to 
ƒ £ S(a). Therefore (2') and (3') are equivalent. 

If (1) is satisfied and J c ƒ, JeB, then / s = J ç = J s = / = 7 implies 
J = I. Hence (4). 

By (2') the intersection of the subbasic set S(a) with {/ e B\I = /} is open 
closed from which the last assertion follows. 

PROPOSITION 1.30. Let R be a ring and B be a space of prime ideals, con­
taining Max R. Then the following statements are equivalent: 

(a) I = 7 for all I e B. 
(b) All S(a), aeR are (open and) closed. 
(c) Bis a zero dimensional Hausdorff space, B = Max R, and ai is a sheaf 

of simple rings with a Hausdorff sheaf space. 
(d) M is a sheaf of simple rings. 
If every proper ideal ofR is contained in some maximal proper ideal, then 

(b) implies 
(b') Bis a locally compact totally disconnected Hausdorff space (in fact all 

S(a) are compact open). 

PROOF. The equivalence of (a) and (b) was shown in 1.29 and (b) imme­
diately implies that B is zero dimensional Hausdorff and therefore 
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B = Max R ; then 1.27 shows that M is a sheaf of local rings which, because 
of (a), must be simple. Let x, y be two points in the sheaf space E of 3k. If 
p(x) ^ p(y) with the sheaf projection p : E -> B of ^?, then x and y can be 
separated since B is Hausdorff. If p(x) = p(y) and x and y cannot be 
separated, then z = x — y cannot be separated from 0(7), / = p(x). 

The set of all ue Et which cannot be separated from 0(7) forms an ideal 
of Ej ; since 1(7) can be separated from 0(7) (indeed 1(B) and 0(B) are open 
disjoint neighborhoods of 1(7) and 0(1), respectively) this ideal is proper 
and thus must be zero since Ej is simple. Hence z = 0(1) and x = v. Thus 
E is Hausdorff and (c) is proved. 

But (c) trivially implies (d) and (d) implies (a). Let now / e B and take 
a 4 7. Suppose that (a) + f]S(a) is a proper ideal. If it is contained in some 
M e B, then M e h(a) n S(a) = h(a) n S(a) = 0 which is impossible. Hence 
(a) + ag = (a) + f)S(a) = R, and thus S(a) is a compact neighborhood of 
ƒ by 1.9. 

Under the condition (b) of 1.30, we have 01(B) = T(p,B) = T(p,S(</)) 
© T(p, h(a)) for every aeR. We may identify T(p,X) for an open closed 
X cfi with the subring of T(p,B) of all sections vanishing outside X. If 
there is an identity e of R modulo f]S(a) = a^ then T(p, S(a)) is contained 
in the image R of R in T(p, B) by 1.15; hence R is the direct ideal sum of 
Hp, S(a)) and £ n T(p, h(a)). Moreover, p\S(a) is a sheaf of simple rings 
with identity; we may assume that ë is the characteristic function of S(a) 
(i.e. takes the value 1 on S(a) and 0 on h(a)). Then e is a central idempotent 
of R(a) = (e) = T(p, S(a)) (indeed (a) £ (e) is clear, and (a) is not contained 
in any of the maximal ideals Ie, I e S(a) of (e)). 

A ring is called biregular if every principal ideal is generated by a central 
idempotent. Note that a commutative ring is biregular iff it is von Neumann 
regular. We thus have the following proposition, a portion of which is due 
to DAUNS and HOFMANN [19] : 

PROPOSITION 1.31. Let R be a ring and B a space of proper prime ideals. 
If R has identities modulo a& for allaeR (which is trivially satisfied if R has 
an identity) then the conditions (a)-(d) of 1.30 are equivalent to 

(e) R/(~]B is biregular, 
moreover 

(b') is satisfied. 

PROOF. We just saw that 1.30 (b) implies (e); for the converse we may 
assume that f]B = (0). Let aeR and let e be a central idempotent with 
(a) — (e). Then for / e B we have a el iff e e I and thus S(a) = S(e); since 
R = Re © R(l - e) we have e $ I iff I e R(\ - e) for every proper prime 
ideal / ; therefore S(e) = h(R(\ — e)\ hence S(a) = S(e) is closed. Further 
S(e) is compact by 1.9. 
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REMARK . In the light of our previous discussion a more general definition 
of biregularity would be the following: A ring is biregular if every proper 
ideal is contained in a maximal proper ideal and every principal ideal is a 
direct factor (i.e. (a) ® a1 = R for all a e R). Then a ring is biregular iff it is 
isomorphic to the ring of global sections with compact support in a sheaf 
of simple rings over a locally compact zero dimensional space. 

About minimal primes. We discussed the case that for all prime ideals in B 
we have the relation 1 = 1. Since the assignment I \-> I is fundamental for 
the whole theory of sectional representation, we give some additional 
conditions which make (4) equivalent to (1) in 1.29. Most of what follows 
is due to KEIMEL [53]. 

Let R be a ring and B a space of proper prime ideals. We recall that for 
each subset A £= R the ideal Ag was the smallest ideal J with AJ + J A 
£ [JB and was given by Ag = f]S(A) (1.14). For this discussion we fix B 
and abbreviate Ag by A1; we also write a1 = ajj = (a)g. For an arbitrary 
prime ideal P (whether contained in B or not) we may define P = (J^P a

1.: 
since P is prime, if PeB = h(f]B\ the relation (a)a1 c f]B c P and 
Ui) £ P implies a e a1 £ p, hence still P g P even then. We will restrict 
our attention only to prime ideals in B; we may therefore assume that 
f]B = 0 and B = Spec/?. Then R is semiprime; therefore IJ = (0) and 
ƒ n J = (0) are equivalent for any ideals ƒ, J, since (ƒ n J)2 c U. Hence 71 

is the largest ideal of R with ƒ n ƒ' = (0). Let ̂  be the set of all ideals ƒ of R 
which are of the form ƒ = a11 for some as R. Suppose now that the follow­
ing condition, due to KEIMEL, is satisfied 

(K) For all a,beR there is a cG R u {1} such that a1L nb1JL = (ach)1 x 

(with alb = ab). 
Then ff is a rvsemilattice with zero. 
Let & be an arbitrary filter in '<f. We write P = \J(,C/\F). Then 

(1) a e P iff aLLi&. 

PROOF. The condition a G \)(Sf\^) is equivalent to the existence of a 
d u 6 , ^ with aefc11; but aefc11 and a11 c ft11 are equivalent be­
cause of a^a11 and b111 = fe1, which proves (1). If, in addition, !W is 
an ultrafilter, then a11 $ $F (as in any semilattice with zero) means the 
existence of a b G R such that a11 n b11 = {0} and b11 e &. We may re­
write a11 n b 1 1 = {0} as a11 ç fc111 = ft1, and bA1 e &asb$P. Since 
aetf11 we have a e b 1 and thus P e (J{b1|b^P}. Conversely, if b$P 
then fe11 G jF by (1). Then bL n b 1 1 = b1*?11 = 0. Thus fc1*^, and thus 

(2) P-Uib^btP}. 

Now suppose that a,b$P. Then a11 ,fc11e^ r by (1) and therefore a11 

n b11 G J*\ By (K) we have an element c e R u { l } with (acb)11 e 3F. Then, 
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by (1), acb$P; since a1acb = (0), we have a1 £ (acb)1, similarly b1 

g (acb)1. Hence {bL\b $ P} is an upwards directed family and P is therefore 
an ideal, and indeed as we have shown, a prime ideal. We can then rewrite 
(2) as P = P, and by 1.29, P is then minimal. 

If ƒ is a prime ideal, let ^ = {"L1\a 4 '}• Then (0) <£ .^0, for if (0) = a11 

with a $ ƒ, then a1 c ƒ since ƒ is prime; but P = (0)1 = a1, which is impos­
sible, since I is proper. Moreover, if ak $ I for k = 1,.. . , n, then a**1 $t /, 
hence a|x • • • a x l £ ƒ, which implies (0) ^ a j 1 • • • ax l s a l 1 n • • • n a^1. 
Hence ^ is contained in some ultrafilter & of y. Let P = \J(9\&\ If 
«eP, then a1 L $SF by (1), whence a1 x ^^ 0 , and this implies aeI. Thus 
P C /. 

We have shown the following result, due to KEIMEL : 

PROPOSITION 1.32. Let R be a ring and B a space of prime ideals. Suppose 
that condition (K) above is satisfied. Then a prime ideal P of B is a minimal 
prime ideal in B if and only ifP = P= (J{a£|a <£ P}, i.e. (1) o (4) in 1.29. 

(Note that every IeB contains some minimal PeB without any 
hypothesis by Zorn's lemma.) 

Let us confirm that there are simple conditions which imply condition 
(K), Suppose R has the property 

(C) For all cubeR the relation abe f]B implies baef]B. 
Then a11 = {xeR\uaef]B implies uxef]B for all ueR}. W. l.g. 

assume f]B = (0). Now suppose that x e a11 n b1 \ assume uab = 0 and 
try to show that ux = 0. Since xeb11 we conclude that uax = 0. Then 
axu = 0 by (C). Thus xu e a1 whence xxu = 0 since xea11. Thus xux = 0 
by (C) and thus (ux)2 = wxwx = 0. At this point we can conclude ux = 0 
provided we assume 

(N) if a" e B then ae f)B for all ae B. 
We observe that (N) implies (C); indeed abeB implies (ba)2 e b(f]B)a 

c f j B , whence fca G f]B by (N). 

COROLLARY 1.33. Let Rbea ring and B a space of prime ideals. If an e f]B 
implies a e f]B for all a e P, then a prime ideal IeB is minimal in Biff I = f, 
and the subspace of minimal elements in B is zero dimensional. 

COROLLARY 1.34. Let R be a commutative ring with identity. Then I is a 
minimal prime ideal iff I — I. The space Min R of minimal primes in R is 
zero dimensional. 

COROLLARY 1.35 (KOH [57]). Let R be a ring without nilpotent elements. 
Then I is a minimal prime ideal iff I = /. The space MinP is zero dimen­
sional. (In fact, a ring without nilpotent elements is semiprime.) 

The simple example of the ring of all sequences (an)neN of 2 x 2 matrices 
over a field for which there is some natural m (depending on the sequence) 
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such that all an with n > m are diagonal matrices shows that 1.32 fails in 
general without some condition such as (K). 

§2. The Grothendieck construction for commutative rings and its relation 
to the constructions of §1. The first result about sheaf representation of 
rings is the theorem of Grothendieck in which he establishes the correspon­
dence between commutative rings and affine schemes (1960 [37]). It is em­
bedded into a formidable wealth of material contained in his monumental 
treatise about algebraic geometry; this may be the reason why it did not 
enter the field of vision widely when the field of sectional representation 
began to blossom in the second half of the sixties as a field of interest which 
is independent of algebraic geometry. It has recently been lifted out of its 
encyclopedic environment into the more accessible form of a paperback 
by Macdonald [62] ; there it remained exactly in its original form. It is 
certainly worthwhile to record it here, notably since it has not been possible 
to my knowledge to completely amalgamate Grothendieck's commutative 
sectional representation theorem with the general theory discussed in §1. 
Our presentation is a trifle different. 

Some background. Let, to begin with, R be a commutative ring with 
identity. We recall that for any multiplicative semigroup S ^ R which does 
not contain 0 we can construct the quotient ring S~XR relative to S; there 
is a natural morphism As : R -+ S" 1R; every element in S~ lR may be repre­
sented in the form Xs(r)/Às(s) with re R, seS, and the computations are 
the familiar ones. If S, T are two semigroups with S £ T, 0 £ T, then there 
is a natural morphism As : R -+ S ~1R ; every element in S " l R may be repre-
multiplicative semigroup generated by A. If a.beS, then (a,b}~lR 
= (aby ~1R; hence S~ lR = colim <a>~ 1R, where a ranges through S and 
the diagram over which we take the colimit is in fact a direct system so that 
the colimit in question is indeed a direct limit. 

Now let ƒ be a prime ideal of R. Then R I is a semigroup S which does not 
contain 0; we abbreviate (R\I)~lR by Rj. Recall that this is a local ring 
with a unique maximal ideal? = IRj ; by the preceding Rj = colim (a) " lR, 
a $ I. In particular, suppose that As(r)/Xs(a) = 0, r e R, a $ I. Then the 
image of Â<a>(r)/A<a>(û) in (a}~lR has to be zero in some <fe>_1K with 
b = ac$I. 

The Grothendieck sheaf and the key theorem. Now let G be the disjoint 
union {J{Rj x {I}\IEB} with some B s SpecK. Define y:G -• B by 
y(x) = I iff x G R7. As in §1, let S(a) = {/ e B\a $ 1} be the support of a in B. 
In particular S(l) = B. Let us briefly write r/a in place of À<a>(r)/À<a>(a). 
For any r/a e <Ö>" XR we have a function (r/af:S(a) -* G given by (r/a) (I) 
= (r/a in Rj, /)and y(r/a) is the inclusion map S(a) -~* B. \i(r/a) (I) = 0(1) 
for / G S(a\ then a divides some b e R\I with (r/a)\j) = 0( J) for J s S(b) 
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(note S(b) £ S(a)\) by our last observation in the preceding paragraph. 
Once this is clear we may introduce in E the finest topology making all maps 
(r/a):S(a) -• G, r, aeR, a ^ 0, continuous. (Basic open sets: (r/a)(S(b)) 
with r ,a , fce i? ,0^ a\b) After the preceding observations, y:G -» B is a 
sheaf ^ of commutative local rings with identity, and there is a morphism 
of rings with identity r h> f :R -* T(y, £) given by r(7) = (r in /*,ƒ). Trivially, 
this morphism has the kernel {re R\r = 0 in Rj for all / G B}. 

Recall that the kernel of the morphism XS:R -> S'1/* is the set of all 
r e R for which there is an s e 5 with rs = 0 (indeed, recall that S ~ *R is the 
set of pairs (r,s)eR x S modulo the relation ~ with (r, s) ~ (r', s') iff 
rs' = sr' with suitable addition and multiplication ; in particular, the image 
of r in S~ lR is the class of (r, 1) consisting of all (rs, s), s e S, and this class 
agrees with the class {0} x S of (0,1) iff there is an s G S with rs = 0). Thus, 
with the notation S1 = largest ideal J with J S = (0), which was used in §1 
we have ker Às = S-1. For a prime ideal I of R an element AKU(r) is 0 in 
Rj = colim <tf>" *R, a £ ƒ iff A<fl>(r) is zero in (ay *R for ÀR\j(r) some a e ƒ 
iff ra" = 0 for some a$I and some natural n ; in other words, ker A<fl> = a1. 
We therefore have 

2.1.1. ker ÀRXI = ker(K - R,) = (J a1 = I 
aft 

with the notation of 1.23, 1.24. 
Therefore, by KOH'S result (1.22) we have 

2.1.2. if Max i ï i ö , then ker(K -> T(y, B)) = (0). 

From the relation ker A<fl> = n ( k e r ^R\i\a $ '}» w e recover, for the com­
mutative case, Condition 1.24.3: a1 - f){I\a$I}; from Theorem 1.23(c), 
then for Max R S B i Spec R we immediately obtain R s ^' under g'. 
However, with the aid of the sheaf ^, more can be said as we shall see in 
the following discussion. 

Let us in fact show the surjectivity of R -• T(y, B) = 9(B). Assume that 
a G r(y, B) is global section in this sheaf. In particular a(I) e Rj 
= colim <a>_1R, a$ I ; hence a(I) is in the image of some map <a>_1K 
-* Rj for a suitable a £ ƒ ; thus <x(/) is of the form r/a" in Rj (which is our 
abbreviation for A^ry^/fa")) by the definition of the sheaf topology 
there is some b = ac such that (r/a*)* and (7 agree on S(b); in (b)~lR we 
have rc7bM = r/an. By renaming, if necessary, we may therefore assume 
that (r/an) " and a agree on S(a). Now we assume that B is quasi-compact. 
Then by the usual compactness argument we find elements r(k\ a(k) G R, 
k = 1 , . . . , p, and natural numbers n(k\ k == 1,. . . ,p, such that the local 
sections (r(k)/a(k))n{k) * and a\S(a(k)) agree, and B is contained in the union 
of the S(a(k)). Since all I G B are prime, we have a $ I iff an $ ƒ, hence S(a) 
= S(tf") for any natural n. Thus B £ y{S(a(/c)w(k)+1)|/c = l , . . . , n } . The 
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ideal J = (a(l)n(l)+1,..., a(p)n(p) +l) therefore cannot be contained in any 
I e B, and if Max R c ö w e can conclude that J = R. In particular we 
obtain a special partition of identity 

1 = £ t'(k)a(k)n{k)+l = £ t(k)a(k)n{k) 

k=\ J c = l 

with suitable elements t(k) e R and t(k)\a(k). Now we define r = ££=, l t(k)r{k). 
Then (r - *)(ƒ) = £ £ = 1 ?(*)(?(*) - à(k)n{k)o)(l)\ but if IeS(a{kf) then 
(r(/c) - â(fc)n(k)(T)(/) = 0(1) in R, by the choice of r(k\ a(/c), w(fc); however, 
if I$S(a(k)n) then a(k)el, hence t(k)el because of f(/c)|a(/c), and so 
t(k)(r(k) — a(k)n{k))(I) = 0(1); therefore all p summands vanish and r = a. 
This shows that the Gelfand morphism R -• T(y, B) is surjective. 

The set S(a) ç B for some a e R,a =£0 may be identified with a subspace 
of Spec <a>~ lR which contains Max (a}~1R if Max R ^ B. 

We therefore have the following result. 

THEOREM 2.1 (GROTHENDIECK). Let R be a commutative ring with 
identity, Max i ? i f i ç Spec R. T/ien there is a sheaf y:G -> B, with stalks 
Gj ^ Rj = (localization of R at I) = (R\I)~1R, such that all functions 
r:B -> G are continuous, where r associates with I G B the image ofreRj for 
fixed reR; and the ring morphism r i-> r :R -> T(y, B) is an isomorphism. For 
each a e R the natural map (a}~1R -> T(y, S(a)) is an isomorphism. 

A completely analogous result is available for modules. 
It is clear from the discussion that the nature of Theorem 2.1 is somewhat 

different from the type of theorem given in 1.15, 1.16 or 1.23, say. In these 
cases the stalks of the sheaf associated with R were indeed quotient rings 
of R so that the map from R into a stalk is surjective, whereas, conversely, 
in the case of 2.1 above, the stalks are ring extensions of quotients of R and 
the map of R into a stalk is not generally surjective even though it is epic 
(in the category of commutative rings with identity). Grothendieck (see 
also [62]) points out that a presheaf may be defined on the basis of a 
topology (9(B) rather than on (9(B) itself. One may rephrase 2.1 without 
great difficulty by saying that the presheaf S(a) H* <a>~ lR of commutative 
rings with identity is a sheaf; in the case 1.15 and the related cases in §1 the 
assignment S(a) i-> R/a^ (resp. S(a) H> R/a1) is not in general a sheaf, but at 
least has no nonzero locally zero sections (which is, in a sense, halfway 
towards being a sheaf). In either case the subjectivity of the Gelfand mor­
phism is obtained from a partition of identity argument, but the specific 
complications are of a slightly different type: In §1 we use the smallness 
of the interior of the radical of a certain canonical sheaf of abelian groups 
(1.5-1.6) and thereby a certain geometric property of the sheaf space con­
structed in 1.4 (while the algebraic description of the presheaf as S(a) «-• R/a^ 
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was a second step); on the other hand in 2.1 the partition of identity idea 
hinges directly on the algebraic definition of the sheaf. As it stands, con­
struction 2.1 depends on the commutativity of R, since the algebraic 
localization Rt at a prime ideal is not possible in the noncommutative case 
without special hypotheses, and even more difficulties arise in imitating 
the crucial construction <a>_1R and the relation Rt = colim <a>_1R, 
a $ I. The topological localization R/[japJ f]S(a) does not, by contrast, 
depend on commutativity, nor does the relation f]S(a) = a£. On the other 
hand, our knowledge of local rings and therefore of the stalks in the sheaf 
of 2.1 is vast, whereas the stalks in the sheaves of §1 are frequently obscure. 

3fr' and CS. However, in the commutative case we understand the relation 
between the two constructions. We can formulate the following 

COROLLARY 2.2. Let R be a commutative ring with identity and B a space 
of prime ideals with MaxR £ B. Let 0t' be the sheaf of 1.24 with stalks 
0t'Y — K/I, / = \jafi a1, a1 = annihilator of a in R and let <& be the 
Grothendieck sheaf of 2.1 with stalks Rj. Then there is an injection 0t' -» *S 
and r *-• r : R -* 0t'(B) is an isomorphism. Let &t" be the subsheaf of 8ft! with 
stalks I/I {see 1.24) then B-Rad R s 01"(B) under the Gelfand morphism 
(see 1.24). 

PROOF. Let p'\E' -• B be the sheaf projection of 01' and y:G -> B the 
sheaf projection of ^. Then by 2.1.1 we have a natural injective function 
<I>:E' -* G such that y = p'<f> and that <br = r* where r >t+r\R-+ 3t'(B\ 
resp. r •-• r* : R -• &(B\ are the respective Gelfand morphisms. Then <3> is a 
morphism of sheaves by the definition of the sheaf topologies on E' and G. 
By the definition of Q> via 2.1.1, it preserves the ring operations. The remain­
ing assertions then follow from 2.1 and 1.23. 

By 2.2 we can consider @l' in the commutative case as a subsheaf of the 
Grothendieck sheaf ^. It is exactly the subsheaf whose sheaf space is the 
union of the global sections in the Grothendieck sheaf: 

E = \j{a(B)\ae9{B)} = U l l age (R -* R,)\IeB}. 
The conclusion B-Rad R = ât"(B) emerges here in an indirect fashion. 

We saw an example following 1.24 which shows that this fails in the sim­
plest noncommutative cases. 

Naturally one would like to know when, at least in the commutative 
case, the construction 0t' of §1 and the Grothendieck construction yield 
the same result. We observe that in the commutative case, R/Ï and Rj are 
isomorphic if and only if R/Ï is a local ring. Therefore 0t' -• ^ is surjective 
if and only if 3% is a sheaf of local rings. In 1.28 we obtained a characteriza­
tion of the case that the smaller sheafs? is a sheaf of local rings. Clearly, if 
St' is a sheaf of local rings, then 3% is a sheaf of local rings. Now assume 
that M is a sheaf of local rings. 
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Let IeB and let M be the unique maximal ideal containing I. Let 
N ^ M b e a different maximal ideal ; then / §É N by assumption, hence 
there is an a $ I such that a£ ÇÉ N. This means that there is a b $ N with 
abe f]B. If all elements in f]B are nilpotent (which is the case if B = Spec K) 
then a"&" = (a/?)" = 0 for some n. Thus (a")1 £ JV since bn $ N\ but also 
an $ ƒ, hence (a")1 £ ƒ. Therefore Ï £ N. Hence ƒ is contained in the unique 
maximal ideal M and 0t' is a sheaf of local rings. We summarize : 

COROLLARY 2.3. For a commutative ring R with identity and for a space B 
of prime ideals B with Max R ^ B consider the following statements : 

(1) The morphism 0t' -> <S is an isomorphism. 
(2) The sheaf 0t' is a sheaf of local rings. 
(3) The sheaf 0t is a sheaf of local rings. 
(4) The inclusions i : Max R -> B is a Hausdorff embedding and there is a 

continuous retraction ju:B -• Max R which satisfies I £j fi(I) for all IeB 
and is the Stone-Cech compactification B (= Hausdorffization of B in this 
case). 

Then (1)<=>(2)=> (3) <=> (4). If all elements of B-Rad R = f]B are nil-
potent (which is the case if B-Rad R £ (Spec K)-Rad R, in particular if 
B-Rad R = (0) or B = Spec R\ then (4) => (1) (i.e. all four statements are 
equivalent). 

We may interpret this result as saying that the equivalence of our 
construction 0t' and the Grothendieck construction is tantamount to a 
rather special point set topological property of the B-spectrum. 

It should be pointed out that there are several attempts to approach 
Grothendieck's construction in the noncommutative case by creating 
different concepts of the spectrum. Bergman [7] defines what he calls the 
E pi-Spectrum Epi-Spec R of the ring R ; its elements are equivalence classes 
of ring epimorphisms f:R-+E into epimorphism final rings £, i.e. rings 
such that every epimorphism E -> E is injective; the latter are exactly the 
fields in the commutative case. He singles out the sfield spectrum of classes 
in which the representatives f:R -• E have a skew field as domain. It is 
shown that sfield-Spec R is closed in Epi-Spec R. Some indications as to a 
construction of a sheaf over Epi-Spec R are given, but the version of the 
theory I have seen needs implementation in this respect. Cohn [14] also 
produces a sheaf of local rings associated with any ring R with identity 
and obtains a Gelfand homomorphism from R into the ring of its global 
sections. Its kernel, however, defines a new radical, whose size needs to be 
specified in every case; and the image under the Gelfand homomorphism 
does not in general exhaust the ring of global sections ; indeed some Gelfand 
transforms of noninvertible elements will be invertible in the ring of global 
sections. It is an unsolved question whether or not the Gelfand morphism 
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is an epimorphism in the category of rings. The base space of Cohn's sheaf 
is not a prime ideal space but a suitable substitute thereof. Hochster's work 
also contributes to the generalization of the prime ideal spectrum of a com­
mutative ring to the noncommutative case [41]. 

§3. Sectional representation over Boolean spaces, regular and biregular 
rings. The theory of sectional representation of not necessarily commuta­
tive rings as an area of interest outside algebraic geometry originated in 
the middle sixties with the memoir of R. S. PIERCE [72] about modules 
over commutative rings and with J. DAUNS and my paper about biregular 
rings [19]. These authors by accident or otherwise picked a class of rings 
which was exceptionally suitable for sectional representation. In view 
of the fact that a commutative regular ring is biregular, the biregular 
rings form the larger class of rings. They are characterized by an abundance 
of central idempotents: Recall from 1.31, that a ring is biregular if every 
principal ideal is in fact generated by a central idempotent. In particular, 
the classically well-known test category of Boolean rings is a subclass 
thereof. One particularly simplifying feature in this context is the fact that 
all prime ideals are maximal modular: Spec/? = MaxK and that any 
biregular ring is strongly semisimple: P)MaxR == (0). The sheafs?' over 
Max R thus agrees with the sheaf @l. We saw in 1.30 and 1.31 the deeper 
reasons why biregular rings should emerge early; the full machinery of §1 
is not at all necessary for the characterization theorem for biregular rings. 

THEOREM 3.1 (DAUNS AND HOFMANN [19]). A ring (resp. commutative 
ring) is biregular (resp. regular) if and only if it is the ring of all sections with 
compact support in a sheaf of simple rings with identity (resp. fields) over a 
locally compact zero dimensional Hausdorff space. 

DAUNS and HOFMANN also characterized the ring ^?(Max R) of all global 
sections of the sheaf associated with a biregular ring R as the ring L(R) of 
left multipliers (i.e. abelian group endomorphisms f:R->R with f(rs) 
= f(s)r). In general L(R) is not biregular. Not all questions concerning the 
spectrum of L(R) have been resolved; for some results see DAUNS and 
HOFMANN [20, p. 159 ff.]. The center of L(R) is the centroid C(R) of R 
(i.e. the abelian group endomorphisms/:/? -* R with ƒ (rs) = f(r)s = rf(s)). 
It is the ring of all global sections of 01 taking their values in the centers of 
the stalks. VRABEC [95] used the centroid to adjoin an identity to a biregular 
ring R by forming R + C(R) £ L(R) (where R is the obvious identification 
with a subring of L(R)) and thus obtaining indeed a biregular ring with 
identity, the ring of all global sections in 0t which take their central values 
outside compact sets. One has Spec (R + C(R)) = /?(Spec R). A similar 
phenomenon was observed by DAUNS and HOFMANN [20] in a wide class 
of rings and algebras (including C*-algebras) for the primitive spectrum. 
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Thus one would generally say that for purposes of spectral theory and 
sectional representation of rings the adjunction of identity by adding the 
centroid is the feasible one. 

The characterization theorem for biregular rings itself generalizes older 
results by ARENSand KAPLANSKY about representation of certain biregular 
rings as function rings [2] which in turn generalizes the classical results of 
STONE about the representation of Boolean rings. The characterization 
theorem was used by DAUNS and HOFMANN [19] to compute the auto­
morphism group of a biregular ring. 

Various generalizations of the theory of biregular rings have been found 
in the last five years. There are essentially two lines of thought for such 
generalizations. (A) One weakens the condition for biregularity and arrives 
at rings which are rings of global sections in sheaves of local (rather than 
simple) rings over Boolean spaces. (B) More generally, one considers 
algebraic structures R with a large supply of direct decompositions (as 
they are given, in the case of a biregular ring with identity by any central 
idempotent e in the form of R = Re + R(\ — e)\ In case (A) consider a 
ring R (for the sake of simplicity with identity) and a space B of prime ideals 
containing Max R. We say that R is weakly biregular if for two different 
LJeB there is a central idempotent eel, e$J (equivalently, JeS(e\ 
14 S(e)) or vice versa. Since S(e) for an idempotent e is open and closed 
(with complement S{\ — e) (see proof of 1.30)) the Hausdorff property of B 
follows and we conclude B = Max R. By compactness of Max R, the col­
lection of all S(e) is in fact a basis for the topology, and so again Max R is 
a Boolean space. Then the sheafs? is a sheaf of local rings over a Boolean 
space by 1.27. Conversely, if ̂  is a sheaf of local rings over a Boolean space, 
then the central idempotents of ^?(Max R) are exactly the global sections 
taking the value 1 on a compact open set and the value 0 elsewhere. Then 
clearly J*(Max R) = K/Max-Rad R is weakly biregular. We therefore have 
the following result which is partially due to DAUNS and HOFMANN [20] 
(see also KEIMEL [49]): 

Complement 3.2 to 1.29, 1.30, 1.31. Let R be a ring with identity and B a 
space of prime ideals with Max R ç: B. Then the following conditions are 
equivalent: 

(a) B = Max R and B is a Boolean space. 
(b) M is a sheaf of local rings over a Boolean space. 
(c) R/p)Max R is weakly biregular. 
The result maintains for rings without identity with Max R as the space 

of maximal modular ideals and a locally compact zero dimensional 
Hausdorff space. It has been observed by TILEMAN [90] that the underlying 
ring R of a von Neumann algebra is weakly biregular and Max R is a hyper-
Stonean space, in fact is isomorphic to the maximal spectrum of the center 
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Z(R) under M \-*M n Z(R). TELEMAN used the representation of the under­
lying ring R of arbitrary von Neumann algebras as the ring of global 
sections ^?(Max R) of the sheaf of local rings 0t in order to obtain an 
algebraic decomposition theory for von Neumann algebras [91]. We will 
return to the question of C*- and von Neumann algebras when we discuss 
sectional representation in functional analysis. 

The Boolean decomposition principle. The second idea of generalizing 
biregularity is incredibly general and may be described as follows : 

Let us assume that R is some object in a category s/. The set s/(R, R) has 
the structure of a monoid M under composition of morphisms. Let EM be 
the set of idempotents in this monoid ; this set has a partial order defined by 
u S v iff uv = vu — w, and 1 = 1R is the maximal element. If se is a pointed 
category, then 0RR : R -• R is the smallest element. Let us assume that 
D ç EM is a Boolean sublattice, i.e. a subset containing 0 and 1 in which 
two elements u and v have a least upper bound u v v and in which every 
element u has a unique complement u1. In the case of an object R in the 
category s/ of rings with identity the lattice of all central idempotents is 
isomorphic to such a sublattice under the map which associates with an 
idempotent u in the center of R the endomorphism r •-• ur. Let us assume 
that we have a set based category in which it makes sense to speak of the 
image uR for u e D. Let B be the Stone space of the Boolean lattice D: we 
then have a natural isomorphism u H» U:D -• (9C(B) Ç (9(B) from D onto 
the lattice of open closed sets in B. The assignment U h-> uR:(9c(B)op -> sé 
is then a presheaf in the category si which is defined on the basis 0C(B) of 
C(B)\ if F:Cr'(B)01p -• s/ is a presheaf from a basis (9\B) of a topology 
0(#) into a complete category, one obtains a presheaf through Ft/ 
= lmw ( B ) f K s l ,FK for 1/ £ 0'(B) (see [37]). A presheaf P:^(B)op - Set of 
sets satisfies PU = limFeC,c(B) ^^^PF for 1/ e 0C(B) iff for each finite disjoint 
decomposition U = Vx u • • • u Vn the map PI/ -> f ] ^ *s a n isomorphism. 
One can then show that the extended presheaf P : &c(B)op -» Set is in fact a 
sheaf. Thus (7 •-• uR will be a sheaf iff for any disjoint collection vu..., vn 

in D the morphism uR -> Y\vkR w^h w = t;1v---vt;w isan isomorphism. 
In view of finite induction this is the case iff uv = 0 always implies that 
(u v v)R -• uR x i>P is an isomorphism. 

PROPOSITION 3.3 (Boolean decomposition principle). Let si be a complete 
pointed category with a faithful, limit preserving set functor. Suppose that 
each morphism u:R-+ S has a factorization R-+ uR^> S which under the 
set functor yields the surjective-injective factorization of a function. Let R 
be an object and s/(R, R) the monoid with zero of endomorphisms ofR. Let D 
be a Boolean lattice in s/(R, R) whose meet operation is composition and 
whose join is the l.u.b. with respect to the partial order of idempotents 
in a semigroup. Suppose that for u,veD with uv = 0 the morphism 
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(u v v)R -• uR x vR is an isomorphism. Then there is a sheaf $ over the 
Boolean spectrum B ofD with R £ $(B) ;ifue D corresponds to the compact 
open set U on B via the Stone duality then uR £ &(U). The stalk fflx,xeB, 
where x is a prime, hence maximal ideal ofD, is co\imu^xuR. 

Pierce's Boolean decomposition theorem. Let us test this principle in the 
case of rings. If R is a ring with identity, let E(R) be the Boolean ring of 
central idempotents with the addition (£,ƒ)*-•£ + ƒ— 2ef, and with the 
induced multiplication. Naturally, E(R) also has the structure of a Boolean 
lattice with (e, ƒ) v+e + ƒ — ef as meet and multiplication as join. For 
eeE(R) the subspace S(e) = {ƒ e Spec R\e$I} of the spectrum of R is 
exactly h((l — e)R) and is, therefore, open and closed, and indeed the 
function e H» S(e) is a lattice injection of E(R) into the Boolean lattice 
tft.(Spec/l) of all open closed subsets of SpecR. If R is commutative or 
semiprime, then the representation Theorems 1.17 and 2.1 show that in the 
canonical sheaves over Spec R the characteristic functions of any open 
closed set arise from a central idempotent in the ring. Thus e H» S{e) : E(R) 
-> 0c(Spec R) is in fact an isomorphism in this case. (Later we will see that 
in the case of /-rings we have an analogue (see 4.12).) 

If / G Spec R, then I n E(R) e Spec £(R), and if M 6 Spec E{R\ then there 
is at least one maximal ideal I e Spec R with M £ ƒ for which then neces­
sarily / n E(R) = M. Thus there is a surjective function <j> : Spec R 
-• Spec E(R) given by (/>(ƒ) = / n E(R); it is easily checked to be continuous 
and a quotient map. We point out that for any topological space Y there 
is a universal "Booleanization" Y-+b(Y\ i.e. a map into a (compact) 
Boolean space b(Y) such that every continuous map Y-> X into a Boolean 
space X factors uniquely through b{Y). One can check that the Booleaniza-
tion, which is clearly unique up to within natural isomorphism, is given by 
Y -» Spec (9JJ\ y «-> {U e COc{Y)\y $ U}. It turns out to be a quotient map 
which lumps together exactly the quasi-components of Y; a quasi-
component of Y is the intersection of all open closed sets which it meets. 
We may therefore state that (f> :Spec R -> Spec E(R) is the Booleanization 
of Spec R if R is commutative or semiprime. 

If e e E(R\ then (1 — e)R = e1 in the terminology of 1.24. According to 
3.3 we associate with R and E(R) (as a Boolean lattice of endomorphisms 
r H> er.ee E(R\ of R) a sheafs of rings with identity over Spec E(R) with 
R = ^(Spec E(R)); the stalks 3PX are given by co\\mefxeR ; from the exact 
sequence 0 -> e1 -> R -» eR -> 0 we deduce &x s R/({Jepx

 e±l Hence we 
have a morphism 

3.3.1. iA , : ^ ( / ) - • /* / / = ^ i , ƒ e Spec R, 

with ^ ' as in 1.24, since ( J{e x k^ ƒ, e G £(/*)} ç ( j y ^ / } = ƒ. We 
observe for the first time in this discussion that we need the concept of a 

er.ee
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morphism of sheaves. Indeed if sé, 3d with sheaf projection n\E -> X and 
p. F -> Y are sheaves (of sets) and ƒ : Y -• X is a continuous map we can 
form the pullback sheaf p:E xf 7-> Y, £ x r 7 = {(z,y)e£ Xy y|7c(z) 
= .A)')}» P(z> y) = y- We denote the map (z,y) \+z\E xfY-+Eby ƒ'. A 
morphism se ~> J* is a pair ( ƒ a) with a continuous function a : E xfY-+F 
with pa = p. We can describe ( f a) by giving ƒ and a family 0Ly:sef(y) -> ^v 

of maps such that a :£ Xy 7 -> F with a(z, y) = ocy(z) is continuous. (Cau­
tion : many writers call such a morphism a cohomomorphism and write 
the arrow in the direction in which the arrow/runs!) It is readily checked 
that the family ij/j defines a morphism 9 -> 0t'. 

In all we record the following result whose essential part is due to PIERCE 
and which we formulate with some complements : 

THEOREM 3.4 (PIERCE'S Boolean decomposition theorem for rings). Let R 
he a ring with identity and E(R) the Boolean algebra (lattice) of central idem-
potents of R. Then there is a sheaf of rings 0> over Spec E(R) such that the 
following conclusions hold. 

(a) The stalk 0>x is given by R/x where x = {J{eL\ee E(R\ e$x}> and 
E(ay = {o,i}. 

(b) The Gelfand morphism R -> ^(Spec E(R)) is an isomorphism. 
(c) The map $ : Spec R -• Spec E(R) with (f)(1) = I n E(R) is a quotient 

map ; it is the Booleanization of Spec R provided R is commutative or semi-
prime. 

(d) If I € Spec R, then (j)(I)~ = [j{J\J is a direct factor of R and J £ ƒ j 
and the family xj/f'.^D -> 3t\ = Rjl (induced by the inclusion (j)(I)~ c ƒ) 
give a morphism i// :& -• 01' with 31' as in 1.24. 

The Gelfand morphism maps E(R) isomorphically onto the Boolean ring of 
characteristic functions in ^(Spec (E(R)))(i.e. the continuous sections taking 
only the values 0 and 1). 

In the absence of an identity in R the result maintains, with the modifica­
tion that the image of the Gelfand morphism in (a) is the ring of global 
sections with compact support. These results specialize to the case of com­
mutative rings, where E(R) is the Boolean algebra of all idempotents, and 
to the biregular and weakly biregular situation. 

Many authors have utilized sectional representation over Boolean 
spaces along these lines. 

BERGMAN [4] uses PIERCE'S sectional representation to characterize 
commutative hereditary rings. 

We need the following definitions: A projective R-module is called 
hereditarily projective if every one of its homomorphic images in some 
finitely generated projective module is projective. The ring R is (semi) 
hereditary if all of its (finitely generated) projective modules are hereditarily 
projective. A hereditary (resp. semihereditary) commutative integral 
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domain is a DEDEKIND (resp. PRÜFER) domain. A projective module P over 
R is weakly hereditarily projective if for every finite set A ç P and every 
finite set F e HomR(P, R) there is a decomposition P = Pt © P2 with 
A ^ Px and F(F2) = (0), and if every direct summand of P has the same 
property; R is called weakly l-hereditary if R is weakly hereditarily pro­
jective over itself and weakly semihereditary if every free module of finite 
rank is weakly hereditarily projective. Now we have 

THEOREM 3.5 (BERGMAN). Let R be a commutative ring with identity. 
Then R is weakly l-hereditary iff all stalks 3PX in the Pierce sheaf are integral 
domains. It is weakly semihereditary iff every stalk 3PX is a Prüfer domain. It is 
semihereditary if and only if it is weakly semihereditary and every principal 
ideal is projective. Finally R is hereditary if and only if every stalk 0>x is a 
Dedekind domain, if every principal ideal is projective, and if the following 
two conditions hold: (i) The G elf and transform r of a non-zero-divisor takes 
invertible values outside a finite set. (ii) E(R) is a hereditary Boolean ring. 

The injectivity of modules again relates to properties of the Pierce sheaf. 
KAPLANSKY showed that for a commutative ring R with identity, every 
simple module is injective if and only if R is von Neumann regular (in which 
case the sheaves 3fl, 01', % & all agree and are sheaves of fields). This fails in 
the noncommutative case; however, the following still maintains (and is 
proved with the aid of sectional representation [66]) : 

PROPOSITION 3.6 (MICHLER AND VILLAMAYOR). Let R be an affine ring 
(i.e. a ring which is finitely generated as an algebra over its center Z(R) such 
that each quotient ring satisfies a polynomial identity over Z(R)\ Then every 
simple (one-sided) module is injective iff R is von Neumann regular iff R is 
biregular. In particular 1.30 and 1.31 apply. 

Further applications of Boolean decomposition. KEIMEL introduced the 
ideas around the Boolean decomposition principle 3.3 for semigroups [49] 
and observed that they worked in the same fashion for universal algebras. 
His starting point is what he calls a decomposition lattice of a semigroup S, 
namely a family of direct factors of a semigroup which form a Boolean 
lattice. He constructs the sheaf $ and obtains a sectional representation 
theorem of the type of 3.3. He continues to investigate in the case of semi­
groups to what extent one can in fact produce a modified sheaf with non-
degenerate stalks. As applications he recovers the most general version of 
the representation theorem for weakly biregular rings (without identity) 
and a representation theorem for biregular semigroups. He returns to this 
idea by proving a representation theorem for /-rings which is an analogue 
of PIERCE'S Theorem 3.4. We will discuss this in §4. 

The starting point of COMER'S approach [16] is slightly different, although 
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the principal idea is the same. His approach is particularly suitable to the 
case that the category sé is a category of universal algebras. In this case it is 
advantageous to start with the concept of a congruence and single out the 
so-called factor congruences 0 on R which are characterized by the 
existence of a congruence <j>' such that ^ n f = 1K and that the smallest 
congruence generated by <\> and 0' is R x R. COMER considers such uni­
versal algebras for which the set of all factor congruences is a Boolean 
sublattice of the lattice of all congruences. He then produces a sheaf over 
the maximal spectrum of this Boolean lattice; this construction can be 
given geometrically as COMER does it or functorially as in 3.3. The algebra R 
then emerges as algebra of global sections in a sheaf of algebras of the same 
type over a Boolean space. If every congruence relation of R which is 
generated by a proper Boolean ideal of the Boolean lattice of all factor 
congruences is a proper congruence, then no stalk in the sheaf is degenerate 
and vice versa. The sheaves which arise are called reduced since the factor 
congruences of the algebra of global sections arise from open closed 
decompositions of the base space. COMER also proves the converse which 
exists for all results in this section : The algebra of global sections in a 
reduced sheaf satisfies the original hypotheses and the canonical sheaf con­
structed from it is isomorphic to the given reduced sheaf. COMER'S approach 
applies to all rings with identity ; the strength of the result for rings with 
identity of course depends on the supply of factor congruences ; again the 
class of weakly biregular rings is the only comprehensive one for which 
enough factor congruences are available in order to obtain sheaf represen­
tations over prime ideal spaces. On the other hand, COMER'S method was 
applied by himself to the category of cylindrical algebras. He establishes a 
duality theory for cylindrical algebras in analogy to the duality of commu­
tative rings and ringed spaces in algebraic geometry; at the same time he 
furnishes the applications to algebraic logic which are afforded by the 
sectional representation of cylindrical algebras. 

The sectional representation over Boolean spaces, as PIERCE'S technique 
has shown from the beginning, pertains in particular to commutative rings 
which are generated by their idempotents, and to modules over such rings. 
These objects are the topic of papers by KEIMEL [51] and BERGMAN [5]. 

Baer rings. Sheaf representation of rings over Boolean spaces is also very 
suitable for the class of Baer rings. A ring R with identity is a Baer ring if the 
annihilator ideal a1 of every element is generated by a central idempotent. 
Such a ring is semisimple since it cannot contain nilpotent principal ideals. 
Let J? be its Pierce sheaf. Then all stalks 0>x are domains; for let a, be0>(B) 
with a(x) 4" 0 but a(x)b(x) = 0, then there is a compact open neighborhood 
U of x such that a( y)b(y) = 0 for y s U. Let e e 0>(B) be the characteristic 
function of U. By replacing a and b by ae and be, respectively, we may 
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assume that ab = 0; if/is the central idempotent generating the annihilât or 
of a then bf = b; now f(x) must be either 0 or 1 ; since a(x)f(x) = 0 and 
a(x) ^ 0 we must have f(x) = 0 and thus b(x) = (bf)(x) = 0. Conversely, 
if & is a sheaf of domains over a zero dimensional Hausdorff space B, then 
0>(B) is a Baer ring if and only if the sheaf is Hausdorff (PEERCY [71]); 
indeed Hausdorffness of the sheaf space of any sheaf means that the sub-
space on which two sections agree is open closed in the intersection of their 
domains. Now if every a e 0>(B) has open closed support then clearly 0>(B) 
is a Baer ring; conversely, if ^(B) is a Baer ring and a e @{B\ then a1 is the 
ideal of all sections b whose support is contained in the open zero set of a; 
since a1 is generated by a central idempotent, i.e. a characteristic function e, 
we conclude that the open zero set of a is the support of e and is, conse­
quently also closed. One thus can summarize: 

PROPOSITION 3.7. Let Rbea ring with identity. Then R is a Baer ring if and 
only if its Pierce sheaf is a Hausdorff sheaf of (not necessarily commutative) 
domains over a Boolean space. 

The ideal Ix of all sections vanishing at a point x is clearly the kernel of 
R -• &x and is, therefore, prime. After the preceding, any of its elements is 
annihilated by some element not belonging to it. Thus Ix £ ïx ç Ix which 
implies that Ix is minimal (see 1.29, 1.32). On the other hand if P is a 
prime ideal of R, then E(R) n P is a prime ideal, hence a maximal ideal of 
the Boolean ring E(R). 

COROLLARY 3.8. For a Baer ring R, let E(R) be its Boolean ring of central 
idempotents. Then there is a commutative diagram of continuous maps 

1 
Min Spec R • Min Spec R 

inclusion X H / X 

SpecR • Max£(R) 
P h>Pn E{R) 

In particular, the injection x H* J^Max E(R) -> Min Spec JR is an isomor­
phism (KIST [55]). | 

The patch topology on Spec R. As HOCHSTER has shown [39] and as was 
known to GROTHENDIECK, there is another universal way of associating a 
Boolean space with any commutative ring R with identity. Indeed, on 
Spec/?, the quasi-compact sets S(a) = {IeSpecR\a$I} and their com­
plements h(a) generate a zero dimensional compact Hausdorff topology 
on Spec R ; the Boolean space with this so-called patch topology will be 
denoted by SpecpK. (The significance of the patch topology for the spec­
trum of lattices and its general background was investigated in [45].) 
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We apply the general construction 1.4 to B = SpecpR and to the family 
{Kj\I e Spec R}, Kj = I. The basic neighborhoods of I in B are given by 
U(a0;au...,an) = S(a0) n h(ax) n - --n h(an) with a04I, au...,anel. 
Now a € K(U(l ; a)) = f] {J e Spec R\l $ J, a G J} ; hence ƒ = KE 

s U - z W i ^ s U / . i / ^ 5 5 ^ w h ^e 1/ ranges through all 
/̂ -neighborhoods of I. The canonical construction of §1 therefore enables 
us to introduce a topology on E = (J{R//|7 e Spec R} which makes the 
obvious map a : E -> SpecpR a sheaf projection of a sheaf 2 of integral 
domains. The topology is generated by the sets r(Spec R) with r : Spec R 
-* £ given by ?(ƒ) = r + ƒ. The Gelfand map r «-•?:/?-• T(a) is injective, 
but not in general surjective. We denote by fc, the quotient field of R/I and 
denote by F the disjoint union {kj\I e Spec R}, and let /?:F -• Spec R be 
the index projection. Set a ^ 0; then 5(7) ^ 0 for ƒ e S(a). In F we can form 
(ólS(a))"1 and then (blS(a)V(âlS(a))"1 for any ieR. The images of all of 
these local sections in F generate a topology which makes /? : F -• SpecpR 
into the projection of a sheafs of fields. Then #"(SpecpR) is a commutative 
von Neumann regular ring with identity and SpecpR is naturally isomor­
phic to its spectrum (1.31, 3.1). Moreover, it contains a copy of JR/Rad R, 
with Rad R = f] Spec R. This yields a portion of the folio wing result, which 
is due to WIEGAND [96], with some parallel developments by OLIVIER: 

THEOREM 3.9. Let Rhea commutative ring with identity, and let B = SpecpR 
be the spectrum of R with HOCHSTER'S patch topology, which makes it into a 
Boolean space. Then there is a sheaf of integral domains S> and a sheaf of 
fields 3F over B with Q) £ 2F such that fy = R/I and ^> is the quotient field 
of R/I. The map R -> 9(B) -» ^(B) is a homomorphism into a regular ring 
Reg R = ^(B) with spectrum isomorphic to B. The kernel is precisely 
P) Spec R. The assignment Reg is a functor from the category of commutative 
rings with identity into the subcategory of regular commutative rings which 
is left adjoint to the inclusion functor, i.e. every morphism from R into a 
regular ring factors uniquely through Reg R. 

Since 8F as a sheaf of simple rings over a Boolean space has a Hausdorff 
sheaf space by 1.30, then Q has a Hausdorff sheaf space. Then &(B) is a 
Baer ring and ® is the PIERCE sheaf of 2(B). After 3.4,2(B) is also weakly 
1-hereditary. If R denotes the image of R in 3)(B) obtained through r >-+ r, 
and if E(Q)(B)) denotes the Boolean ring of all idempo tents, i.e. characteristic 
functions of 2(B\ then it is easy to see that 2(B) = k • E(2(B)) (by which 
we mean the ring of all linear combinations Y/t ' et w^h rteR and 
eieE(2(B))\ In particular every semiprime commutative ring R with 
identity is contained in a Baer ring S which is generated by R und the 
idempotents of S. Such a super ring S is called a Baer extension of R. Thus 
we have 
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COROLLARY 3.10. The ring ®(SpecpR) is a Baer extension for any commu­
tative ring R with identity. 

Baer extensions as such, however, can be obtained in a more economical 
fashion. On the subset Mini* = {PeSpecR|P minimal in Spec/*} the 
hull-kernel topology and the patch topology agree since Min R n S(a) is 
open and closed by 1.29, 1.32. 

Since every prime ideal is contained in a minimal one, QMinR 
= fjSpecR. If we denote by 2' = 2\MmR the restriction oT^MinR: 
a"1 Min R -> Min R, then 3>' is a sheaf of domains over a zero dimen­
sional Hausdorff space with zero dimensional sheaf space. In particular, 
r i->r|Min R:R -> 2\B) is a homomorphism of R into a Baer ring with 
kernel Rad R = fjSpec R. 

KIST [55] has in fact shown the following result : 

COROLLARY 3.11. The subring R' of ^'(Miïn R) generated by the image of 
R -• Qi'iMm R) and the characteristic functions of Min R n S(a\ asR, is 
a Baer extension of R/QSpec R. If Min R happens to be compact (which is 
the case if f or any aeR there is an xeR with a1 = x 1 1 by a result of 
HENRIKSEN and JERISON [38]) then R' = ^'(Min Ry 

KEIMEL [52] suggests a different process : For a commutative ring R with 
identity he considers the complete Boolean lattice L of annihilators A\ 
A c R. With each maximal ideal M of L he associates the ideal I(M) 
— [JW G ^} which he shows to be in Spec R. Then M •-• J(M):Spec L 
-+ SpecpR turns out to be a continuous map. The image X of this map con­
tains Min R and is compact. KEIMEL considers the pullback sheaf of D\X 
over Spec L -• SpecpR and obtains its ring of sections as a Baer extension. 
This extension is, in fact, a complete Baer ring in the sense that the anni-
hilator of every subset is generated by a central idempotent. 

Independently from KEIMEL, DAVIS [22] has described the same process 
in more general form by introducing axiomatically an orthogonality rela­
tion on R and thereby introducing a complete Boolean lattice in the lattice 
ideals of R. DAVIS also gives a characterization of the subspace X gSpecpR : 
Indeed a prime ideal IeSpecR is in X if and only if (1) a.bel implies 
(a11 + b11)11 (= l.u.b. of a11 and bL1 in the Boolean lattice of polars) 
ç /, (2) a e I implies a1 ± (0). DAVIS also shows that X = Min R if and 
only if for all a/beR there are a' e a1, a" e a11 such that be (a' + a")11. 

§4. Sectional representation of lattice-ordered structures. In the case of 
rings we saw that a general representation theory by sections in sheaves is 
available and observed that it is particularly satisfactory for special classes 
of rings which have either particular algebraic properties such as commu-
tativity, biregularity, etc. or particular spectral properties such as Haus-
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dorff structure space. There is, however, a wide class of rings which in view 
of additional structure has a very gratifying sectional representation theory, 
namely, the class of rings with lattice structure. 

Generalities. An excellent source of reference for this material is 
KEIMEL'S set of Tulane Lecture Notes [54]. 

DEFINITION 4.1. A lattice-ordered ring (briefly /-ring) is a ring R with a 
lattice order such that for all a ,b ,ceRwe have 

(1) a ^ b implies a + c ^ b + c, 
(2) a ^ b und 0 ^ c imply ac ^ bc und ca ^ cb. 

Note that this includes the case that all products ab are 0, in which case (2) 
is trivially satisfied. Thus the case of lattice ordered abelian groups 
(i.e. commutative groups with a lattice order satisfying (1)) is included. 

The /-rings clearly form a category / whose morphisms are ring mor-
phisms and lattice morphisms. The kernel of an /-morphism is called an 
/-ideal ; they are exactly the ring ideals which are order convex sublattices. 
One of the fundamental facts, which make the ideal theory of /-rings 
exceptionally pleasant is the following : 

THEOREM 4.2. For an Uring R the set of all l-ideals is a complete distributive 
lattice relative to intersection and sum. 

The place of prime ideals in general ring theory is taken by the irreducible 
ideals in the case of /-rings. 

DEFINITION 4.3. An /-ideal / i s irreducible if for any pair / , K of /-ideals 
J n K ^ I implies J g / or K ç: ƒ. The space of all irreducible proper 
/-ideals of R with the hull-kernel topology is denoted by Irr R. Every /-ideal 
I of R which is maximal in the collection of all /-ideals of R which do not 
contain a fixed, but arbitrary element a e JR is irreducible. 

PROPOSITION 4.4. For every l-ideal I we have I =f] {JelrrR\I ç J}. 
The hull-kernel topology is generated by the basic sets S(a) = {/ e Irr R\a $ 1} 
as it was in the case of Spec R. If we set S(A) = {ƒ e Irr R\A $ 1} for A g R, 
then the function I *-> S(I) is a lattice isomorphism from the lattice of all 
l-ideals ofR onto the lattice of open sets of In R. (This is reminiscent of the 
situation of Spec R for a commutative ring R with identity.) The sets S(a\ 
a€R are exactly the quasi-compact open subsets of Irr R. 

For details about all of these facts we refer to KEIMEL [54]. 

Sheaves of l-rings and Keimel's main theorem. 

DEFINITION 4.5. A sheaf of l-rings is a sheaf of rings all of which are /-rings 
and in which the lattice operations are continuous. Clearly, in a sheaf of 
rings, all full sets of sections over a subset of the base space form an /-ring 
under pointwise operations. 
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For a space J3 £ Irr R and I e B we can define 

4 _ t I = [jIeU f] U, where U ranges through the neighborhoods of / 
in B. 

Clearly 

4.5.2. I = U HS(4 
afl 

(Compare 1.4.3 and 1.12.2). We also have an analog of KEIMEL'S Lemma 
1.14. 

LEMMA 4.6. Let B be an arbitrary collection of irreducible l-ideals in an 
Uring R, let I be an Uideal and A a subset of R. Then the following conditions 
are equivalent : 

(1) ƒ = f]S(A). 
(2) / is the largest Uideal with (A) n ƒ ç f]B, where (A) is the Uideal 

generated by A. 

The proof is analogous to the proof of 1.14. We again denote f)S(A) 
with Ag and write a^ in place of (a)^. The general construction 1.4 applied 
to R and the family B produces a sheaf 01 of /-rings, p:E -> B with stalks 
El = R/I x {ƒ} s RIL where 

4.6.1. / = U * i -
afl 

The Gelfand morphism r v+r\R -> ?̂(B) = T(p, B) is an /-morphism with 
kernel f]B by the equivalent of 1.7. There is, however, in the current situa­
tion one aspect which goes beyond Theorem 1.15; KEIMEL shows that we 
can find a larger support system 3> (1.9) such that 0t is O-soft and that R 
contains T^p, B). Indeed KEIMEL proves the following: 

LEMMA 4.7. Let B £= Irr R be a subspace such that each proper Uideal 
I ^R is contained in some J eB. Let G G T(p, X) for X closed and quasi-
compact in B. Then a — r\X for some reR. Further, if O denotes the col­
lection of all quasi-compact closed sets, then T0(p, B) ç: R. 

INDICATION OF PROOF (SEE [54] FOR DETAILS). We assume without loss of 
generality a ^ 0. The method of §1 gives a finite cover X e Ut u • • • u Un 

by open sets of B and elements ax,...,aneR such that a\X nUk = ak\X 
n Uk for k = 1,. . . , n. Let a0 = 0, U0 = B\X. Without loss of generality 
we may assume ak ^ 0. If Ik = f](B\Uk), k = 0, . . . , n, then the hypothesis 
about B implies R = I0 4- • • • + /„. Let b = a0 v • • • v an ^ 0; by a 
property which can be established for all /-rings one can find elements 
bk s Ik, 0 < bk, k = 0, . . . , n, such that b = b0 v • • • v bn. 

Finally define a = (a0 A b0) v • • • v (an A b„). Then one can show that 
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(a - à\X)(X) s Rad E n p~\X), whence a = â|X by 1.8. If a is a global 
section with support X, then â = <r if a is constructed as above. Thus 
one obtains the following theorem : 

THEOREM 4.8 (KEIMEL'S representation theorem for Wings). Let R be an 
Uring and B £ IxxR a space of irreducible ideals such that every proper 
l-ideal of R is contained in some I eB. Let O be the support system of all 
closed quasi-compact subsets of B. Then there is a <f>-soft sheaf of l-rings 
0t,p.E -+B with stalks 3tt — R/Ï,I = [jafI a^, where a& is the maximal 
l-ideal J with (a) n J = f]B. There is an exact sequence 0 -• f]B -• R 
-• 01(B), and the image of the last map contains T^p, B). IfB = Irr R, then 
f]B = 0, and a^ = a1. 

COROLLARY 4.9. If L is an l-ring with a formal unit (i.e. an element which 
is not contained in any I e Irr R; an identity is a formal unit), then R is iso­
morphic to the full l-ring of global sections in a sheaf of l-rings R/Ï over 
Irr R. Indeed, for a formal unit u the space S(u) = Irr JR is quasi-compact. 

Local l-rings. We will call an /-ring R a local /-ring (KEIMEL: quasi-
local) if it has exactly one proper maximal ideal containing all other proper 
ideals. The developments of 1.25 ff. carry over to the case of /-rings and 
show that ai is a sheaf of local /-rings if and only if Max Irr R -> Irr R is a 
Hausdorff embedding. (See 1.26.) In this case all ideals ƒ are /-primary for 
I e Max Irr R, i.e. if J £ I is such that R/J is a local /-ring with unique 
proper maximal ideal I/J, then / s J, and R/I is a local /-ring. 1.29 carries 
over from Spec R to Irr JR without change. 

We also have an analogue of 1.30: 

PROPOSITION 4.10. Let R be an l-ring and Max I r r R ç f l c irr R. Then 
the following statements are equivalent : 

(a) I = 1 for all I e B. 
(b) All S(a), aeR are (open and) closed, in fact they are compact. 
(c) B is a zero dimensional Hausdorff space, B = Max R, and 0t is a sheaf 

of simple l-rings (i.e. nonsingleton l-rings with proper nonzero l-ideal) with a 
Hausdorff sheaf space. 

(d) 0t is a sheaf of simple l-rings. 

In any /-ring R the principal /-ideal (a) generated by a e R is a direct 
factor iff (a) + a1 = R. If every principal /-ideal in R is a direct factor, we 
call R a biregular l-ring (KEIMEL: quasi-regular). We then also have 

COROLLARY 4.11. In 4.10 the conditions (a)-(d) are also equivalent to 
(e) R/f]B is a biregular l-ring. 

KeimeVs Boolean decomposition theorem. The analogy between the 
theory for rings and the theory for /-rings can be carried much further. As 
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an example, one observes that the special properties of the lattice of/-ideals 
(see 4.2) allow a particularly efficient application of the Boolean decom­
position principle 3.3. In fact we have a precise analogue of PIERCE'S 
Theorem 3.5 which can be obtained from 3.3 and which KEIMEL derives 
from a slightly generalized version of 4.8. In the case of arbitrary rings R 
with 1 we had to apply the Boolean decomposition principle to the Boolean 
lattice E(R) of central idempotents; we could replace E(R) by the Boolean 
lattice (9C (Spec R) of open closed sets of Spec R only in the special cases of 
commutative or semiprime R. From Proposition 4.4 it follows, however, 
that for /-rings #c(Irr R) is exactly isomorphic to the Boolean lattice of all 
direct factors of R. 

THEOREM 4.12 (KEIMEL'S decomposition theorem for l-rings). Let R be an 
I-ring. Then there exists a sheaf Jf of l-rings over the maximal ideal space 
B = Spec(#c(Irr R)) such that the following conclusions hold : 

(a) The stalk Xx is given by Xx = Rjx, where the l-ideal x is given by 
x — [j{f]U\U e &c(lvv R), U $ x} and is directly indecomposable, i.e. Irr Mx 

is connected. 
(b) The Gelfand morphism R -» Jf(£) is an isomorphism. 
(c) The map <\> :Irr R -» B with (/>(ƒ) = {U e 0c(lrr R)\I <£ U} is a quotient 

map and is the Booleanization of Irr R {which collapses exactly the quasi-
components of Irr R (see discussion preceding 3.4)). 

(d) If I G Irr R, then 0( ƒ )~ = (J {J \ J is a direct factor of Rand J c ƒ} and 
the family ij/j : Jfj/} -• âlj = R/I defined by the inclusion (j)(I) g / give a 
morphism X -> 0t with 0t as in 4.8. 

f-rings. In the case of arbitrary rings we obtained special results for the 
subclass of commutative rings. Analogously, within the class of /-rings one 
has a subclass which plays a similar role as the class of commutative rings 
in the class of all rings, namely the class of/-rings. 

DEFINITION 4.13. An /-ring R is called an /-ring if a A b = 0 implies 
a A be = a A cb = 0 for all a, b, c ^ 0 in R. 

For our purposes, the following results are the most crucial ones (see 
KEIMEL [54]). 

PROPOSITION 4.14. If I is a proper l-ideal in an f-ring R then the following 
conditions are equivalent : 

(a) R/I is totally ordered. 
(b) I e Irr R. 
(c) (Resp. (c')) a A b = 0 implies a e I orbs I for all a,beR (resp.,for all 

a^bsR with a,b> 0). 

Since Qlrr R = (0), an /-ring is then an /-ring iff it is a subdirect product 
of totally ordered rings. For an /-ring R and I e Irr R the subspace {I} ~ 
= {JeIrrR|7 g J} is totally ordered under inclusion. 
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PROPOSITION 4.15. If I and J are incomparable elements of IrrR for an 
f-ring R, then I and J have disjoint open neighborhoods in Irr R. 

With reference to 1.26, 1.27 we formulate 

COROLLARY 4.16. For an f-ring R the inclusions Min Irr R -> Irr R and 
Max Irr R -» Irr R of the space of minimal (resp. maximal) irreducible ideals 
are Hausdorff embeddings. 

In particular, for Max Irr R c B g Irr R the sheaf 01 is a sheaf of local 
/-rings. Another feature of commutative rings, namely, that 1 = 1 charac­
terizes the minimal prime ideals, yields an analogue for /-rings : 

PROPOSITION 4.17. The following statements are equivalent for an irreduc­
ible ideal I of an f-ring R : 

(a) / = /. 
(b) ael iffaL$l for allaeR. 
(c) / € Min Irr/?. 

This result is due to the fact that for principal /-ideals in an /-ring we 
have what amounts to condition (K) preceding 1.32: 

Indeed (a) n (b) — (a A b) for all a.beR with a,b = 0. This naturally 
leads to a sectional representation theory of /-rings over its minimal ideal 
space which is similar to what we commented on in the corresponding 
context with commutative rings, Baer rings, etc. (see KEIMEL [54, 6.9]); the 
analogue of the Baer rings are the so-called projectable /-rings, i.e. /-rings 
in which every principal polar a1 is a direct factor. The pertinent sheaf 
representation theorems are given in KEIMEL [54, 6.12, 6.13]. It should be 
mentioned that HOCHSTER'S patch topology on the spectrum of a com­
mutative ring has an analogue for all /-rings. 

Investigations along these lines have been undertaken by S. J. BERNAU 
for /-groups. In any case, for an /-ring R, the space IrrpR of all irreducible 
ideals with the patch topology (generated by all S(a) and all h(a)) is a locally 
compact zero dimensional Hausdorff space. The analogue of the sheaf in 
3.9 exists and is a sheaf of totally ordered /-rings over a locally Boolean 
space. This yields an embedding of any /-ring R into the ring of global 
sections in a sheaf of totally ordered /-rings over a locally compact zero 
dimensional space, which is a projectable /-ring which is generated by the 
image of R and the idempotents of the embedding ring. (Compare 3.9 ff.) 

It should be recorded that a sectional representation theory for distri­
butive lattices with 1 and 0 has been carried through in complete analogy 
to the GROTHENDIECK theory for commutative rings by BREZULEANU 
DIACONESCU [12], [13] and, independently by SELESNICK [75]. With each 
lattice these authors construct a sheaf of local lattices (i.e. lattices in which 
the complement of {1} is an ideal) over the space of prime ideals and show 
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that the lattice is isomorphic to the lattice of all global sections in this sheaf. 
The relation between this theory and the character theory for lattices by 
KEIMEL and the author have not been systematically investigated. 

§5. The foundations of the general theory of sectional representation. In 
this section we attack the problem of finding a general theory of sectional 
representation which, on one hand, subsumes the applications which we 
saw in earlier sections, but is likewise suitable to represent topological 
rings and algebras by topological rings of continuous sections. Since the 
concept of a sheaf is ostensibly too narrow as we need nondiscrete stalks 
in whatever more general mathematical object we hope to operate. For 
some of the technical details we refer to DAUNS and HOFMANN [20] where 
Dauns and I tried such a general theory for the first time. The emphasis has 
shifted from certain points to others, and this change is reflected in the fol­
lowing presentation. Some of our discussion may seem unnecessarily 
general; on the other hand it shows exactly why sectional representation 
techniques work in special cases. A slightly different approach based on 
topological rather than our uniform structure consideration has recently 
been offered by Mack [62a]. 

Uniform fields. We first pave the way for the concept of a field of uniform 
spaces which generalizes the idea of a sheaf of sets in the desired direction. 

DEFINITION 5.1. Let ^ :£*-•£ be surjective functions, i = 1,2. We 
denote with nx v 7t2:£i v £2 -* B the fibered product of Ex and £2 ; in 
other words Ex v E2 is given by the pullback diagram 

Pi 
Ex v E2 >Ei 

Pi 

B 

and nx v n2 = rc^, i = 1,2. (In terms of elements E{ v E2 = {(*i,x2) 
6 £j x £2l

7ri(*i) = rc2(x2)}, a nd Pi(xuxi) = xi-) This concept, of course 
generalizes immediately to any family {n^i e 1} of surjective functions onto 
B. If n : E -• B is a surjective function, then a field uniform structure is a 
filter U on E v E such that the filter [U] generated by U on E x E is a 
uniform structure of E. 

An alternative description follows : If a family of uniform structures Hfc 

of 7i"^b), fcefl, respectively, is given, then we obtain a unique structure U' 
of the disjoint union E of the n~x(b\ such that the uniform space (£, IT) is 
the coproduct of the uniform spaces (n~l(b\ Ub) in the category of uniform 
spaces. The filter U of all U n (E v E\ U e IT, is a field uniform structure, 
and every field uniform structure may be so described. We note [U] = U'. 
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Thus the difference between a field uniform structure and a coproduct uni­
form structure is purely technical and motivated by the field theoretic 
applications; indeed the concept of a field uniformity will allow us to speak 
later of "vertical closeness, i.e. closeness on the fibers H;"1^)". In a sheaf, 
however, the entire topological structure of the sheaf space is "lateral" and 
we must imitate and generalize this idea until we arrive at the right 
synthesis generalizing both the concept of a bundle and the sheaf. 

DEFINITION 5.2. Suppose that n :E -• B is a continuous surjective map of 
topological spaces. If V is an open subspace of B then a local section over V 
is a continuous map o:V-* E such that na is the inclusion map V-> B. If 
V = B then a is called a global section or just a section. The set of all sec­
tions is denoted by r(7i), the set of local sections over Kby T{V,n). If 
o\V^ B is a (not necessarily continuous) function with no = inclusion 
V -• B, then a is called a serration over V. The set of serrations over Fis 
denoted by S(V, it). We write S(n) = S(B, 7c). 

The sections are the device to make precise what one means intuitively 
if one speaks of "shifting a point of E continuously and laterally from one 
stalk into a neighboring stalk." 

We will now single out those topologies on E which are particularly 
suitable to accommodate the ideas of both "vertical closeness in stalks" 
and "continuity of lateral shifts." 

DEFINITION 5.3. Let n : E -> B be a surjective continuous function of 
topological spaces and suppose that we have the following data : 

(a) A field uniformity U for n ; 
(b) a set Z of continuous local (and global) sections so that E 

= (J{im a\a e S} (with the image im G of a). 
For a member U e U of the field uniform structure and a section a e £ 

we denote with U(a) the "tube" {x e E\n(x) e domain o, and (a(n(x)\ x) e U}. 
We will call (71, U), n : E -> B a uniform field if the following condition is 
satisfied : 

(c) The neighborhood filter of a point x E E has a basis of sets of the 
form U((T\ U G U, a e I , G(TZ(X)) = x. 

The sets Eb = n~ l(b) are called the stalks of the field. 
Trivial examples are given by constant fields n : F x B -> B with a 

uniform space F, and n the projection. The field uniformity is the one 
induced on the stalks F x {b} by the uniformity of F. 

It is useful to observe that condition (c) has an equivalent version in 
which an arbitrarily selected and conceivably much smaller family of 
sections replaces the full set of local sections : 

PROPOSITION 5.4. A continuous surjective function n:E -> B together with 
afield uniformity His a uniform field if and only if the following condition 
is satisfied: 
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(c') There is a function x h>ax from E into the set F of all continuous 
local sections such that (i) ox(x) = x and that (ii) the neighborhood filter of x 
in E has a basis of sets of the form U{ax\V), where U ranges through a basis 
of U and V through an open neighborhood basis of n(x) in B. 

(For a proof see [20, p. 4].) 
Note that in general the sets U(o) need not be open. 
The following is the immediate : 

PROPOSITION 5.5. If (n, XX), n:E -• B is a uniform field, then n is an open 
continuous map and therefore a quotient map. For any subset B' £ B the field 
uniformity induces afield uniformity If for n'\E' -+ B' where E' = n "1B' and 
n' — n\E', and with the restriction of local sections, too, one obtains a uniform 
field (n', If), n'\E' -* B'. On each stalk n~l(b) the induced topology and the 
topology defined by the uniform structure of Eb originating from the field 
uniformity agree. 

LEMMA 5.6. On the set S(n) of all serrations we obtain a natural uniform 
structure as follows: For each element U of the field uniform structure U we 
define the set U c S(n) x S(n) to be the set of all pairs {a, x) with (<t(b), 
T{b))eU for all beB. Then the set {U\UeVL} is a basis for a uniform 
structure of S(n). 

It will be understood from now on that S(n) (and accordingly all S(V, n) 
for any open set V of B) have this uniform structure and that r(7r) and the 
Y(V, n) have the induced uniform structure. Since completeness of uniform 
spaces is the most basic of all pertinent general concepts we observe 

PROPOSITION 5.7. Let (n, U), n:E -• B be a uniform field. If all stalks are 
complete, then S(n) and r(n) are complete; in particular, r(n) is closed in S(n). 

(Proof see [20, p. 7].) 
We anticipate that (just as in the theory of function spaces) the idea of 

boundedness will play an important role. Yet in the absence of base points 
(such as we have in case of groups) the concept of boundedness in general 
is a little more delicate. 

Let (7T, U) be a uniform field. If UeU and n is a natural number we 
denote by Un the relation inductively defined by Un = Un~1U,n> 1, 
where juxtaposition of relations signifies the relation product. We then 
define an equivalence relation on S(n) (resp. on r(n)) by pv = {(<r, t)|there 
is a natural number n such that (<r(b), x(b)) e Un for all b e B}. (In the uni­
form space S(n) there is a familiar equivalence relation OLV, relative to which 
two elements a and t are related whenever there is a finite sequence 
<T0 = <7,..., a„ = T with ((Tf, (Tf_x)e U for i = 1 , . . . , n, in other words if 
(a, T) G Un for some n) Obviously, OLV £ PU9 but the converse does not hold 
(see [20, p. 9, 1.23]). We define p = f]{pv:UeU}. 
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DEFINITION 5.8. Let (71, U) be a uniform field. We say that S(n) and V(n), 
respectively, are semiconnected if and only if S(it) and r(7t) have only one 
/^-component, respectively. The relation /? is called the semiconnectivity 
relation. 

We then have the following proposition : 

PROPOSITION 5.9. Suppose that (it, U) is a uniform field. Then r(n) is semi-
connected if B is quasi-compact and all stalks Eb are connected. 

For the applications of the theory to topological algebra the connectivity 
of the stalks is a mild hypothesis since all real topological vector spaces are 
connected. However, the assumption that the basis be quasi-compact is 
unfortunately not satisfied often enough. We therefore are interested in the 
possibility of singling out sections which should be called bounded. 

It is exactly for this purpose that this semiconnectivity is introduced. We 
will later have a distinguished section in a uniform field, namely the zero 
section in a field of topological groups. The bounded sections then are 
exactly the sections in the semicomponent of the zero section. That this 
idea agrees with the more traditional idea of boundedness is most easily 
recognized if the field uniformity for 11 is given by a function d : E v E -> R+ 

into the nonnegative reals which induces a metric on each stalk and is such 
that the field uniformity has a basis of sets Ur = {(x,y)eE x E\d(x,y) < r). 
Then two sections are in the same semicomponent if for some real number 
C we have sup{d(a(b), o(b))\b sB} <* C. In this sense, Proposition 5.9 
generalizes the traditional fact that continuous real valued functions on a 
compact space are bounded. 

In conventional function space theory, separation properties of the 
domain space can often be expressed in terms of sections. Such conclusions 
remain relevant in the context of uniform fields. The following definitions 
are convenient : 

DEFINITION 5.10. Let (it, U) be a uniform field. We say that the field uni­
formity U and a set 2 of global sections are separating (resp. strongly 
separating), if for two different base points b,ceB there are UeVL and 
sections (T,TGZ with a(b) = x(b) such that <J(C)$ U(T) (resp. <x(c)£ U(T)~, 
the closure of U(a) in E). We say that U is smooth for S if for each d e l and 
U e U there is a Ve U with V(o)~ n it' ^domain a) £ JJ(a). We then have 

PROPOSITION 5.11. If in a uniform field, U and T(n) are strongly separating, 
then the base space is Hausdorff. If, in addition, U is smooth, then the base 
space B is regular Hausdorff. 

After we have inspected some of the properties of uniform fields and 
their global sections, we turn to the question of the existence of uniform 
fields. While, it is true, there are quite general existence theorems, the right 
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degree of generality, which so far has sufficed for all applications I know, is 
given by the setting of transformation groups, from which uniform fields 
arise naturally. This we are discussing in the following : 

DEFINITION 5.12. Let G be a group acting on the set E in detail : There is a 
function (g, x) f-»gx:G x E -+ E with lx = x and (gh)x = g(hx) for all 
x G E and all g.heG with identity 1 of (G). Let B = E/G be the orbit space 
and n : E -> B the orbit projection. 

Suppose that U is a field uniformity making (n, U) into a uniform field. 
We say that (n, U) is a homogeneous uniform field if all functions x h* gx : 
E -* E, g G G are continuous and for each U eU and each geG there is a 
Veil such that (gx, gy) e U for all (x, y) e V. We say that (rc, U) is a uniformly 
homogeneous uniform field if in addition, G is a topological group and for 
each U G U and each geG there is a Ve U and a neighborhood JV of the 
identity of G such that (gx, hy) e U for all (x, y)eV and all (g, h) e G x G 
with hg'1 e N. The group G is called the structure group. 

It is clear that for a homogeneous uniform field the group G operates 
on the set of serrations S(V,n) under (ga)(b) = go{b\ and that T{Vyn) is 
invariant under G for all open F ç B . One shows the following without 
difficulty [20, p. 16]. 

PROPOSITION 5.13. If(n, U), n:E -» B is a uniformly homogeneous uniform 
field with structure group G, then G is a topological transformation group of 
E, the topology of B is the orbit space topology, and G acts as a topological 
transformation group on T(K, n) for all open V £ B. 

The noteworthy fact which figures prominently in applications is that 
one has a general existence theorem for uniformly homogeneous uniform 
fields. Indeed, suppose that G is a topological group and E a set on which G 
acts on the left. We let n : E -» B be the orbit projection and assume that we 
are given a set Z of right inverses a : B -• E of n such that E = {a{B)\a e Z}. 
The set Z will be called a full set of serrations. We then define a filter on 
E v £ by the basic sets U' = {(x, y)eE v E\ye Ux} where U ranges 
through the filter basis © of open identity neighborhoods of G. This filter 
is called the field uniformity determined by the action of G. The collection 
{U'(<r)\U G 93, (X G E} is a subbasis for a topology, called the field topology 
determined by the operation of G. We then have the following principal 
result : 

THEOREM 5.14. If a topological group G operates on the left on a set E and 
we have a full set Z of serrations, which is invariant under the action of G, 
then we have the following conclusions : 

(1) G is a topological transformation group on E when E is given the field 
topology determined by the operation of G. 



1972] REPRESENTATIONS OF ALGEBRAS BY CONTINUOUS SECTIONS 341 

(2) The orbit space topology (quotient topology) on B and the finest 
topology of B making all serrations oofY* continuous agree. 

(3) (ft, U), 7i : E -*• B is a uniformly homogeneous uniform field. 
(4) For each xeE let Gx be the isotropy group of G at x. Then the function 

ij/x:G/Gx -» Enix) defined by ij/x(gGx) = gx is an isomorphism of uniform 
spaces if G/Gx has the right quotient uniform structure (given by the basic 
entourages {(gGx, hGx)\he Ug} where U ranges through a basis of open 
identity neighborhoods). 

(5) If G has a basis of identity neighborhoods which are invariant under 
all inner automorphisms (i.e. if the right and left uniform structure on G agree), 
then the operation (g, x) ^gx:G x E -• E is uniformly continuous relative 
to the right uniform structure of G and the uniform structure [U] of E (i.e. if 
U G U, then there is an identity neighborhood N of G and a Veil such that 
(gx,hy)e U whenever hg'1 e N and (x, y)e V). In other words, (n,U) is 
uniformly homogeneous. 

(6) If s and œ are topologies on E and B such that (n, U), n : (E, s) -• (B, co) 
is a uniform field relative to which 2 is a set of sections, then e is at least as fine 
as the topology determined by the action of G, and œ is at least as fine as the 
topology given by (2) above. 

The topology produced on the orbit space B by (2) has been called the 
weak *-topology, but for reasons of conflict with established terminology 
we call it the field *-topology or field star topology. A group G is called an 
SIN-growp (for small invariant neighborhoods) if it satisfies the hypothesis 
of 5.14.5. 

The canonical field. Recall that by 5.11 the group G operates as a topo­
logical transformation group on the uniform space r(7r) leaving the sub-
space S invariant. In most applications of Theorem 5.14 the data are 
given in the following form: We have a topological group G and family 
of subgroups Kb,beB;we define G/Kb to be the space of right quotients 
gKb and set E = {G/Kb x {b}\b e B] and let G operate on E by g(hKb, b) 
= (ghKbib). The orbit map may then be replaced by the function n:E 
-• B given by n(gKb, b) = b. We obtain a full set 6 of serrations g:B -• E 
by defining g(b) = (gKb, b\ and ô is obviously invariant under the action 
of G. Thus Theorem I applies and provides a uniformly homogeneous 
uniform field (% U) which is unique in the sense of 1.14*6, and for which 
G is a space of continuous sections. The function g*-+ g:G -> r(n) is 
uniformly continuous, and is injective if and only if f){Kb\beB} = {1}. 
Even in this case the corestriction G -+ 6 of this function need not be open. 

DEFINITION 5.15. If a uniformly homogeneous field (TU, U) arises from a 
topological group G and a family {Kb\bsB} of subgroups as described 
above, then (n, U) is called the canonical field associated with G and 
{Kb\beB}. 
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In the canonical field whose topology is defined by a particularly 
economic initial set of serrations G (which is just one orbit of the set of all 
serrations under the action of G) we have some additional properties 
which are worth noticing : 

PROPOSITION 5.16. Let (n, It) be the canonical field associated with G and 
{Kb\b 6 B}. Then for any open identity neighborhood U of G the tube U\g) is 
open for any geG. 

Each of the following conditions suffice for the field ^-topology on the 
base space to be Hausdorff: 

(a) G\[j{Kb\beB} — f]{G\Kb\b e B) has a nonempty interior W and for 
different base points b.ceB we have KbKc n W^ 0 or KcKb n W =£ 0 . 

(b) b ± c in B implies Kh ± Kc and Ç){U'(\y\U' e 11} = 1(B). 

(See [20, p. 17, 1.51 or p. 28, 2.26].) 
Note that W = G\([j{Kb\b e B})~ and that sometimes it is not too hard 

to verify this condition ; e.g. if G is a normed algebra with identity then the 
group of units is open and fails to meet any ideal, so that this condition is 
satisfied if all Kb are ideals. The condition (Kb + Kc) n W ± 0 would in 
this case certainly be satisfied if Kb and Kc are two maximal ideals. In the 
discrete case, of course W is just the complement of the union of the Kb. 

A frequent case in the applications is the case that the Kb are actually 
normal subgroups, in which case all stalks are topological groups in their 
own right. This should give the field additional structure. We therefore 
introduce the concept of a uniform field of topological groups. 

DEFINITION 5.17. Let (rc, ll); n:E -» B be a uniform field such that the 
following additional conditions are satisfied: 

(a) All stalks Eb are groups and the function (x, y) \^x~1y:E x E -• E 
is continuous. 

(b) The field uniformity induces on each stalk the left (resp. right) uni­
form structure given by the topological group structure of the stalk 
induced by (a). 

(c) For any Uell there is a WeU such that (x, s),(y, t)e W and 
n(x) = n(y) imply (x~1y9s~1t)e U (resp., (yx _ 1 , t s - 1 ) e U). 

Then (TC, U) is called a left (resp. right) uniform field of topological groups. 
If all stalks are abelian groups, the distinction between the left and the 

right uniform structures become immaterial. 

PROPOSITION 5.18. If (n9 U) is a uniform field of topological groups, then 
for each open V £ B the uniform space T(K n) is in fact a topological group 
relative to the operations given by (a~ 1T)(V) = a(v)~ 1T(V) for veV; and our 
standard uniform structure on T(F, n) is the left (resp. right) uniform structure 
derived from this topological group structure. 

If we now recall the concept of semiconnectivity of S(7i) or r(7c) discussed 
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in 5.8 we note that it may be shown that the relation of semiconnectivity is 
a congruence on r(7c). Let rb(n) denote the semicomponent of the identity 
section 1. Then the sections in Tb(n) are called bounded. 

PROPOSITION 5.19. The set rb(7r) of all bounded sections in a uniform field 
of topological groups is a closed normal subgroup of r(n). 

By 5.7 we know that every section is bounded if the base space is quasi-
compact and all stalks are connected. 

It is, however, not only the subgroup of bounded sections which plays a 
role in the theory, but also the subgroup of sections which vanish at infinity 
in a suitable sense. Indeed let § be a filter in B. Let T^(n) be the set of all 
sections a such that the sets cr-1((7'(1)) where U runs through the filter of 
neighborhoods of 1 in G generate a filter which contains §>. In a loose way 
we might say that a e r ô (n) iff lim (7 = 0. Then T^ (n) is a closed subgroup 
of r(7r). Frequently § will be generated by complements of an ideal of 
quasi-compact sets of B. 

With the aid of the canonical uniform field associated with a topological 
group and a family {Kb\b e B) of normal subgroups we obtain the following 
corollary to Theorem 5.14: 

THEOREM 5.20 {The canonical existence and uniqueness theorem. DAUNS 

and HOFMANN [20]). Let G be a topological SIN-growp and {Kb\beB} a 
family of normal subgroups. Let E = [j{G/Kb x {b}\beB} and n:E -+ B 
the function n(gKb, b) = b. Then there is afield uniformity U and there are 
topologies on E and B such that 

(1) (ft, U), n : E -• B is a uniform field of topological groups and the topology 
of E has the subbasic open sets U\g\ where U ranges through the open 
neighborhoods of 1 in G and gsG. 

(2) The topology of B is at the same time the finest one making n con­
tinuous and the coarsest one making all g:B -• E continuous. It is given by 
the subbasic sets {b\g e UKb}> U and g as in (1). 

(3) The function g i-> g : G -• r(7c) is a continuous topological group mor-
phism with kernel f]{Kb\b G B}. It is an isomorphism of topological groups 
onto the image iff for any identity neighborhood UofG there is a neighbor-
hood V of I in G such that f]{VKb\be B} ç U. If G is connected, then 
G ç Tb(n). 

(4) The function g \^>(gKb,b):G -> Eb, is a quotient mor phism of topo­
logical groups for each beB. 

(5) The topologies of E and B are minimal relative to the property of making 
n : E -• B into a uniform field relative to the field uniformity U and relative to 
the requirement that all sections g, gsG be continuous. 

We continue to call the morphism of (3) the Gelfand representation (or 
Gelfand morphism). 
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For the benefit of the algebraist we give a purely algebraic version of this 
existence and uniqueness theorem : 

COROLLARY 5.21 (DAUNS AND HOFMANN [20]). If G is a group and 
{Kb\b eB} a family of subgroups, then there is a unique structure of a sheaf 
of groups on E = [j{G/Kb x {b}\beB} relative to the function n:E -• B 
as sheaf projections so that the Gelfand representation g ^g:G -• r(7t) into 
the group of all continuous sections is well defined, and which is the coarsest 
with these properties. The topology in E is generated by the finite intersections 
of the g(B), geG as basis and the field *-topology on B is generated by the 
projections of these sets. 

For rings, this theorem was also established by MULVEY [67]. Note that 
the field *-topology on B is generated by the sets h{a\ aeG where h(a) 
— {beB\asKb} whereas, in the ring case, the hull-kernel topology is in 
fact generated by the complements S(a) = B\h(a). We should refer back to 
3.9, where the patch topology appears as a refinement of the field *-topology 
and the hull-kernel topology. 

Mulvey's adjunction. If R is a ring with identity and {Ib\b e B} a fixed 
family of ideals such that the quotient morphisms R -> R/Ib separate, then 
one obtains from Corollary 5.21 a sheaf n : E -> B of rings with identity 
with the stalks Eb = R/Ib x {b} s R/Ib, and the Gelfand morphism 
R -• r(7r) is injective. This reduces the study of a ring R with a given sub-
direct representation and of the modules over such a ring essentially to the 
study of ringed spaces n : E -• B together with a subring R of r(n) such that 
{r(b)\r eR} = Eb for all beB. This is the approach which was worked out 
in great detail by MULVEY [67]. Some brief indications of the essence of 
this approach are in place, in particular since the problem of carrying a 
similar program through in the case of fields has only had some tentative 
beginnings such as the work of TAKAHASHI [79]. 

We write 0Î for the sheaf of rings over the base space B and denote the 
distinguished subring of âë(B) by R. Let M be an R-module. We apply the 
technique of 1.4 (which we will generalize in §6) to M and the family of 
abelian subgroups {Ib- M\beB}. In other words we define Rb = 
\JbeU f]{Ib'M\be U} where U ranges through the neighborhoods of b 
in B. The basic neighborhoods of b are given by h(F) = {ceB\F s /c} 
where F is a finite subset of Ib. Thus Kb = \jF^ib f]{Ic * M\F s Ic). 

We know from 1.4 that there is a sheaf of abelian groups over B with 
stalks Jtb £ M/Kb. Just as in the discussion following 1.19 we obtain a 
bilinear sheaf map 0t x Jt -• M, which makes Jt into an ^-module. 
However, due to the choice of a very specific topology on £, namely the 
field star topology induced by the family of the Ib, we are in a better position 
to identify the stalks Jtb as we were then (in §1) where an otherwise 
unidentified topology was given on B. 
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LEMMA 5.22. We have Rb = Ib-M and thus Jtb = M/(Ib • M) for all beB. 

PROOF. Trivially, Rb s lb. M. We have to show the converse. Let 
melb- M ; then there are elements rkeIb,mkeMi k = 1,. . . , n, such that 
m = Yfk * mk- Now 1/ = h{rl9..., rn} is a neighborhood of b in B and 
ceU means exactly rke Ic for k = 1 , . . . , n. This implies that 
m = £rfc mk6 Ic- M, hence m G p){ 7C • M\c e I/}, and therefore m G Kb. 

The assignment M v* Jt \% functorial on the category R-Mod of R-
modules and thus extends to a functor L into the category âë-Mod of 
-^-modules. The assignment which associates with any ^-module Jt the 
R-module Jt(B) of its global sections, is likewise functorial, where the 
R-module operation on Ji(B) is given by (r-(j)(b) - (r + Ib)-<r(b) with 
the R/Ib = â?b-module operation in Jib. Let us denote the functor 
01-Mod -• R-Mod which we have thus defined by T. If Ji is an arbitrary 
^-module, then we can define a morphism EM : LTJi -> Ji oi ^2-modules 
by entier + Ib - TJt, b) = (7(b), since all sections in Ib • TJt vanish because 
•4ib is an R//6-module. The claims that s M is a sheaf and in fact an ^-module 
morphism are readily checked. Let Jt e 01-Mod and N e K-Mod and let 
f:LN -> Ji by an ^2-Mod-map. Then we produce an R-Mod map f':N 
^TJi by defining f'(n)(b) = f(n + /biV,6), where ne N, beB. The 
element (Lf')(n + Ib- N, b) in Lrv# is given by ƒ \ri) + /b • T ^ by the way 
the functor L is defined on morphisms; if we apply zJt we obtain 
eAfin) + ƒ> « r ^ b) = /'(n)(b) which was exactly f(n + ƒ„ • M, fe). Thus 
e7/(L/') = ƒ, and/ ' is certainly uniquely determined by this relation. Thus 
we have obtained a bijection ƒ ^ ƒ ' : @-Mod(LN, Ji) -> R-Mod(N, H#) 
which precisely guarantees that L is left adjoint to V in such a way that 
Sj{ is the co-unit (= back adjunction). 

The unit (= front adjunction) yN:N -> FLN is given by (lLN)\ where 
\LN :LN -• LN is the identity, and it turns out that it is exactly the Gelfand 
morphism of N. Its kernel is f]{Ib • N\b e B}. We have thus established the 
following result : 

PROPOSITION 5.23 (MULVEY'S adjunction theorem [67], [68]). Let R be a 
ring with identity and {Ib\b e B) a fixed family of ideals. Let 0t be the 
canonical sheaf of rings with identity over the space B which is endowed with 
the field star topology. Then the global section functor F for the category 
01-Mod of ^-modules over B into the category R-Mod of R-modules has a 
left adjoint L which associated with each R-module M an tffl-module over B 
with stalks (LM)h = M/(Ib • M). The front adjunction yM : M -• TLM is the 
Gelfand morphism with kernel f]{Ib- N\be B}. The back adjunction Sjf.Ji 
-* LTJi is given by zM(a + Ib • T M, b) = a(b). 

If we wish to apply MULVEY'S adjunction theorem to the developments 
of §1, we arrive at the following conclusion: Let B £ SpecR be a space of 
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prime ideals of the ring R with identity such that f]B = {0}. Let Ib 

= [japb ag ; then the field star topology on B which is used in the con­
struction of LR, is equal to or coarser than the hull-kernel topology by 5.21. 
In the establishment of the MULVEY adjunction it was necessary that we 
used the field star topology in order to obtain (LM)h = M/(Ib • M). In 
general, the hull-kernel topology on B and the field star topology induced 
from {711 e B} do not agree. Indeed for the two topologies to agree, it is 
necessary and sufficient, that for each I eB, and each hull-kernel neighbor­
hood U of I there is a field star neighborhood F of ƒ contained in U ; 
equivalently for all I eB and all a G R\I there is a finitely generated ideal F 
contained in 7 such that F ç J, J eB implies a $ J. Let us observe that 
F g 7, if F is finitely generated, means that there is an ax 4 J with F c </̂  
= a1 (since f}B = {0}). Thus we have 

LEMMA 5.24. If B is a set of prime ideals of a ring R with f]B = {0}, then 
the hull-kernel topology of B agrees with the field star topology associated 
with the family {I\I e B} if and only if for all I eB and all a$I there is an 
element ax$I and a finitely generated ideal F with F ç a\ such that for any 
J eB the existence of an a2$J with F c a\ implies a$J. 

While it is not so easy to see through this characterization of the equality 
of hull-kernel and field star topology, certain sufficient conditions are 
easier to understand. If, e.g., the hull-kernel topology is compact Hausdorff 
and the field star topology is Hausdorff (see 5.16) then the two topologies 
must be equal since compact topologies are minimal among Hausdorff 
ones. Indeed we have the following 

PROPOSITION 5.25. Let R be a ring with identity and B = Max R. Then 
the hull-kernel topology and the field star topology induced by {I\I e Max R] 
agree on B. 

PROOF. Let IeS(a) = SB(a) in B; then h(a) = hB(a) = B\S(a) is closed 
and hence quasi-compact in B, since B itself is quasi-compact. For every 
J ^ ƒ the set {ƒ, J} is closed in B, since B = MaxK is Tv Thus by 1.16, 
there is an aseR with a, e I and a3 - 1 e J c J; in particular a3 $ J. By 
the quasi-compactness of h(a) we find elements au...,anel such that 
h(a) ç S(at) u • • • u S(an). If we let F be the ideal generated by au..., an, 
then F s 7 and thus / e {J e B\F c J} c h(F) = h({au..., an}) = h{ax) 
n-- n h(an) ç S(a). Since {J eB\F ç J} is a basic neighborhood of I 
relative to the field star topology induced by {J\J e £}, this topology is 
finer than or equal to the hull-kernel topology. The converse is always 
true. Hence the assertion. 

This proposition shows that MULVEY'S theory applies, e.g., to any 
strongly semisimple ring R with identity and the ideal set {Ï\I e Max R}. A 
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proof which is completely analogous to the one in Proposition 5.25, but in 
which the application of 1.16 is replaced by an application of 1.28 yields 

PROPOSITION 5.26. Let R be a strongly harmonic ring with identity and 
B = Max R. Then the hull-kernel topology and the field star topology 
induced by {I\Ie Max R} agree on B. 

Thus, as another example, MULVEY'S setup works for all strongly har­
monic rings R and the ideal set {/|/eMaxR}. This includes all weakly 
biregular, hence all biregular and thus, in particular, commutative regular 
rings. In this fashion one recovers the adjunction described by Pierce [72]. 

The property which was essentially used in the proof of 5.25 and 5.26 
was in the first case a property of the ring R = 01(B) of global sections in the 
sheaf 0t and in the second case a property of the ring R — 0t'(B) of global 
sections in 0t\ namely that for a hull-kernel open neighborhood U of a 
base point b there was a section a in R whose support is contained in U 
and which takes the value 1 in b (see 1.16 ii and 1.28). If, more generally, R 
is a subring of 01(B) for a ringed space 01, then MULVEY calls R completely 
regular in 0t if it has this property and if, in addition, the base space B is 
Hausdorff. The ring R is called compact in 0t if it is completely regular in 0t 
and the base space is compact. In the latter case one has necessarily 
R = 01(B) [67]. Compactness of R in 0t for a completely regular R in $ is 
equivalent to saying that every maximal ideal of R contains some Ih 

= {a e R\a(b) = 0} [67, 7.1] and in addition these conditions are equiva­
lent to the condition that the adjunction (L, T) of 5.23 is an equivalence 
[67, 8.1]. This, then, applies not only to all strongly semisimple harmonic 
rings R with identity and the family {7|/eMaxR}, but also, in view of 
what has been said above, to all strongly harmonic rings R with identity 
and the family {Ï\I e Max R}. If MULVEY'S arguments should not depend 
on the Hausdorffness of the base space, we would in fact have that (L, T) 
is an equivalence for all strongly semisimple rings with identity whether 
they are harmonic or not. 

§6. Given topologies on the base space. In §5 we have seen that the 
problem of sectional representation has a general and in some sense 
canonical solution. One of the most unsatisfactory features is that in the 
most interesting cases (such as the representation of rings by a family of 
quotients modulo prime ideals) we are given a topology on the base space 
(such as the hull-kernel topology in the case of rings and prime ideals). We 
would naturally prefer to obtain a field or sheaf over the given base with 
its given topology (and not necessarily with the field *-topology). The 
theorems about the canonical fields in §5 tell us directly when sectional 
representation over a given topological base space is possible : This is the 
case if and only if the given topology is equal to or finer than the field 
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*-topology. This, unfortunately, is rarely the case in the applications which 
arise in ring representation since the hull-kernel topology is generated by 
S(a) = B\h(a). In this section we will discuss a method which will allow us 
to amend the situation in an optimal way. In the algebraic situation we 
encountered this in §1 ; it deserves to be called the method of topological 
localization and we maintain the name even for the somewhat more com­
plicated analytical case. The essentials of this method have been presented 
in [20, p. 40 ff.], in a systematic fashion ; but the present viewpoint is just a 
trifle different. 

Localization. Let (n, U), n : E -* B be a uniform field, and let B be a subset 
of a topological space C. Let Z cz r(7r) be a full space of global sections. 
For any c e C we consider on £ the equivalence relation Rç defined by 
G Rcx if and only if for each [/eU there is a neighborhood V of c in C 
such that (v{v\X{V))eU for veVr\B. Let Ec = E//?c x {c} and define 
Ë = (J{£c x {b} | c e C}. The projection n :E -• B is given by 7t(x, c) - c. 
For each section o e Z we obtain a serration â : C -* Ê via the definition 
<j(c) = KC(<T). It is clear that the set 2 = {â |<reE} is full, i.e. that Ë 
= (J{(j(C)|ceC}. Let now 1/GU. For technical reasons only let us say 
that two sections a and % of L are U-close at ceC if there is a neighborhood 
W of c in C such that fcefîn^ implies {a{b\ x(b)) s U. We now define two 
subsets Uc and U^ of £ v E as follows : 

(i) C/c = {(x, .y)e£ v E\a and T are l/-close at 7t(x) = 7i(j7) for all 
(a, z)ex x y}, 

(ii) (7^ = {(x,y)eÊ v E\a and T are t/-close at 7T(X) = TiCy) for some 
((7, T)GX X ƒ } . 

Let us keep the following observations in mind : 

LEMMA 6.1. The sets {Uc\UeVL} and {l/Ç|l/elï} generate the same 
field uniformity Ü for 7i : £ -• C. 

The proof rests on the fact that for a given ( /el lwe may pick a KeU 
with V=V~1 and FKK c (7 and show that ^ s l/c c yÇ [20, p. 41]. 

The following lemma is purely technical. It is, however, quite useful in 
the sequel. 

LEMMA 6.2. Let W be an open set in C and suppose that for two sections 
(j,T6l one has Wn B a {beB\(a(b\x(b))e U} for a given UeU. Then 
(â(c)J(c))e Uc

x for all ceW. Conversely, if {d(cii(c))e Ve for all ceW, 
then (<r(b), x(b)) eU forbeBnW. 

PROOF, (a) We recall â(c) = Rc(a) and f(c) = RC(T). By the definition of 
Uc

x we have (JRC(<T), JRC(T)) e L/C if there is a neighborhood N of c in C such 
that beN nB implies (<j(b\x(b))e U. Since we may take N = Wif ce W, 
this condition is satisfied for ceW. 



1972] REPRESENTATIONS OF ALGEBRAS BY CONTINUOUS SECTIONS 349 

(b) For the converse, observe that (/^((T), /^(T)) e Uc implies that a and t 
are [/-close at c. This immediately yields the converse. 

Note that it follows from 6.2(a) that a and f are /?-related if G and T are 
j8-related (see discussion preceding 5.8). 

According to 5.6 the set £ of serrations for n inherits from Ü a uniform 
structure, and we will from now on tacitly assume that 2 is equipped with 
this uniform structure. We then also have the lemma : 

LEMMA 6.3. The function a *+o :Z -• 2 is an isomorphism of uniform 
spaces. If Z is semiconnected, so is 2 . 

PROOF. Let U e U. If (d(fe), r(b)) e U for all b e B, then (<r(c), f(c)) e Uï for 
all ceC by Lemma 6.2; and if (â(c%f(c))e Uc for all ceQ then (a(b),x(b)) 
e [/for all be J3. 

We have now associated with a space S of global sections in a uniform 
field (7i, U), n : E -• B and with a space C with B c C a candidate for a new 
uniform field, namely (7?, fl), n.E^C such that the given space S is 
isomorphically injected into r(7i). We are, however, lacking a field topology 
on Ë. Such a field topology is secured in the following lemma : 

LEMMA 6.4. As â runs through all sections of ̂ 2 with â(iz(x)) = x, W through 
the collection of open sets of C, and 0 through U, the resulting family of 
tubes U(â\W) is a basis for the neighborhood filter of x relative to afield 
topology on Ë for it. This field-topology induces on the stalks Eb,beB, the 
quotient topology associated with Eb = "L/Rb. 

Vc(o(W)) 

ÏUC(â\W) 

FIGURE 2 
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PROOF. Let U e U and pick Ve U so that VV s U. Let y G Vc(â\W). By 
the definition of Ve this means that for all T G y, the sections Ö" and T are 
K-close. Thus, for every such T there is an open neighborhood N ^ W of 
iz(y) in C such that beN nB implies (<r(fc), i(fc)) G K We claim that Vc(x\N) 
c Uc

l{a\ W). Indeed let z e Vc(x\N). If p G Z, then T and p are K-close at 7f(z), 
i.e. there is an open neighborhood M ^ N of ft(z) in C such that be M nB 
implies (x(b), p(b)) e V. Since (<r(b), x{b)) e V for all b e N n £, we have 
(<r(b), p(b)) G KF s 1/ for all b G JV n B. Thus by Lemma 6.2, (<r(c), p(c)) G C/C 

for all ceM, and since p(it(z)) = z because of p G z, the claim is established. 
Thus we have associated with each x G Ë a filter basis 93(x) of sets, and 

we have found for each A e 93(x) an A' e 33(x) with Af ^ A such that for any 
ye A' there is a £ G 93(y) with B a A. 

A set g in £ is now called open if for each xeQ there is an A e 93(x) with 
A G Q. This stipulation defines on Ë a topology so that ©(x) is a basis for 
the neighborhood filter of x. 

Let now b e B. A set S ^ Eb = H/Rb x {b} is open in the quotient 
topology iff the full inverse image S is open in £ ; this is the case iff for 
each aeS there is a U e U such that U(G) £ S. But T G C/((X) means 
(a{b\ x{b)) e U for all b e B, hence (<r, f) G UÇ by 6.2. But the point â(b) e S 
has a basis of neighborhoods of the form (l^)(<r) nËb'm Ëb relative to the 
induced topology of Ëb. It follows that S is open in £ iff S is open in Eb 

relative to the induced topology. 
DEFINITION 6.5. If (n, U), n :E -+ B is a uniform field and S a full set of 

cross sections, and if B c C where C is a topological space (whose topology 
does not necessarily induce the field star topology of B). Then the uniform 
field (ft, Ö), it :Ë -• C is called the field obtained by localization of E over C. 
The isomorphism Z -» 2 is called the isomorphism induced by localization. 

REMARK. The construction can be carried out for an arbitrary function 
(j>:B -• C into a topological space instead of the inclusion function (see 
DAUNS and HOFMANN [20] and, for sheaves, KEIMEL [54]). 

Let us observe at this point that after the canonical field associated with 
a group action this is the second instance of a canonical construction of a 
field. 

The group case. Now let us immediately turn to the case of group actions 
recalling that for this case §5 provided the best general results. Let us 
assume then that (rc, U), n : E -• B is the uniform field associated with a 
group action on the left of £ and a full set Z of serrations which are invariant 
under G (see 1.15). It is not hard to see that the group G with its action on I 
permutes the cosets of the equivalence relation /^ for any ceC (see [20, 
pp. 46,47]) and that we therefore obtain an operation of G on the left of Ë by 
g(fc, Rc(a)) = (b, Rc(g<r)). Moreover, f is clearly invariant under the action 
of G on the serrations of it. We now observe that we have two field uni-
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formities for ft: Firstly the field uniformity Ü constructed in 6.1 and 
secondly the field uniformity UG determined by the action of G (see remarks 
preceding 5.14). The latter field uniformity has a basis of elements UG 

= {(x, y) e Ë v E\ye C/x}, where U ranges through the identity neighbor­
hoods of 1 in G. Again we let U' = {(x, y)eE A E\yeUx). Denote 
the neighborhood filter of c in C with 2B(c). Then xey and (x,y)e(I/')? 
means 

(1) (3a6x)(3^e2C(7T(x)))(VfcGB)be W => (lue U)x(b) = ua(b). 

On the other hand, (x, y) e UG means that there is a u e U with y = ux. Thus 
T G y and (x, v) e UG means 

(2) (3d G x)(3u G C/)(Vfe G B)x{b) = ua(fc). 

Since trivially (2) implies (1) we have Ü ç UG. 

We now concentrate our attention on canonical fields. 

LEMMA 6.6. Let (n, VL\ n:E -+ B be the canonical uniform field associated 
with G and {Kb\beB}, and suppose that B a C, where C is a given topo­
logical space. (Recall that we do not assume that B is a subspacel) For 
csC let 2B(c) again be the neighborhood filter of c in C. Then Kc = 
(]u [Jw f]b VKh, bsWnB, W eïB(c), U G © (the neighborhood filter of 
the identity ofG) is a subgroup ofG. 

We consider three fields: 
(a) the uniform field (rç, if), n:E -> C obtained by localization by G 

over C, 
(b) the canonical field (7C#, UG), n* \E* -* C* associated with G and 

{Kc\ce C}, where C* is the underlying set ofC with the field star topology, 
(c) the field (n*,VLG\n* \E** -* C # # where £ # # has the same under­

lying set as E* with the topology generated by the basic setsn~1(W) c\V,W 
open in C, Vopen in E*, and where the topology of C** is the least upper 
bound of the topologies ofC* and C. 

Then we have a commutative diagram of continuous functions 

* >E 

(1) 

— ** 
1, 

lc 

Lc 
with (j>(gG, c) = (Rc(g\ c). In fact (f) is continuous (in fact uniformly on 
stalks) and bijective. On each stalk, (f> induces an isomorphism if G Ç r(7r) 
is isomorphic (as uniform space) to G under the Gelfand morphism. 

PROOF. Let ceC. The relation /^ identifies g and h in G if for each 
identity neighborhood U of G there is a WeW&(c) such that be WnB 
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implies (g(b\h(b))eU\ which means exactly geUhKb. Thus gRcft iff 
g e f]{UhKb\be Wr\ B} for a suitable neighborhood W of c in C. In 
particular, Kc(î) = {geô\îov any 1/G© there is a We2B(c) with 
g e H l t / ^ l b e ^ n B } = f]v[jw f]beWnBUKb}. In order to see that 
Gc = {g G G|g G Rc(l)} is, in fact, a subgroup, we observe that G permutes 
the cosets Rc(g) transitively under the operation of G on the left of G, since 
G is transitive on G and respects Rc. Thus Rc(l) is the orbit of the subgroup 
fixing Rc( Î) as a whole. This subgroup is precisely the set of g with g Rc Î, 
i.e. is £c. The function g »-» Rc(g) : G -• G/Rc s Êc factors through the space 
G/£c of cosets gKc. We thus define a bijective function 0:E # -• É by 
(j)(gKcic) = (Rc(g), c). Then the diagram (1) commutes. Since Ëc inherits 
the quotient topology of G/Rc by 6.4, the function (f)c in the diagram 

(2) 

G^^G 

Ef ^G/RC—+G/RC^EC 
<t>c 

is continuous. 
We identify E with £ # # qua sets and write Ü for the field uniformity of E 

transported to £ # *. After a remark preceding (6.6) we then have Ü ç UG. 
This implies the continuity of 4>. The remainder is clear. 

Note that for each g e Rc and each identity neighborhood U of G we 
have a neighborhood W of c such that g G P){C/Xb|bG Wn £} which is 
contained in UKC if c e B. Hence ^ c ^ UKC = KciîceB. 

In the present situation let us describe explicitly the basic sets of fl. If 
U e ©, then the sets (U'f contain exactly the pairs (gXc, c\ (hKC9 c) such 
that for all g' e gRc and h' e hRc one has a We 2B(c) such that b e Wr\ B 
implies he Ug'Kh. 

It follows that (£, Ü) is a uniformly homogeneous uniform field. If all Kb 

are normal, then the £c are normal (as follows rather immediately from the 
definition of £c) and we have the following simpler description: (U'f 
= {((gKc9 c\ (hRc, c))\ for all g e Kc there is a neighborhood W of c in C 
such that b e B n W implies h e UKbg}. 

Moreover, (rc, fl), rc \Ë -> C is a uniform field of topological groups. 
T/ie localization theorem. Let us formulate the principal results in the 

following theorem : 
THEOREM6.7 (The localization theorem). Let G be an SW-group and 

{Kb\b e B} a family of normal subgroups. Let C be a topological space con­
taining Basa subset and let (rc, U), rc : E -• B be the canonical uniform field of 
topological groups associated with G and {Kb\b e B}. Then there is a family 
of normal subgroups Rc = f]B [jw f]b UKb, where U ranges through the 
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identity neighborhoods of G, W through the neighborhoods of c in C and b 
through B n W, and for the surjective function it:E -• C, E = {G/Kb 

x {c} \c e C) there is afield uniformity U and afield topology on Ë such that 
(n, Ö) is a uniform field of topological groups in which the stalks G/ftc have 
an induced topology which agrees with the quotient topology if the Gelfand 
morphism maps G isomorphically onto G £ r(7t). IfbeB then fcb £ Kb. The 
function g ^g:G -+ ö £ r(n), with g(c) = (gKc,c) is an isomorphism of 
topological groups. If G £ T\n), then ö £ rb(7r). 

The field uniformity UG which is defined on E by the structure of a canonical 
field associated with G and the family {fcc\c e C] of normal subgroups con­
tains Ü. If G is discrete then (iz, Ü) is this canonical field and is, in fact, a 
sheaf In this case, Rc = \JW f]b Kb, W ranging through the neighborhoods 
of c in C and b through B nW. 

We will shortly say that (7?, Ü) is the canonical field for G and {Kb\b e B} 
obtained from localization over C. 

REMARK. We leave open the question of which circumstances would 
generally enforce UG = Ù. The conditions given in [20, p. 48] do not seem 
to be accurate. 

If the two uniformities are the same, then the field star topology induced 
on the set C by the canonical field is coarser than C, but otherwise this is 
not clear. Note that for discrete G, i.e. in the sheaf case, we do have this 
information. Note that we have recovered and in fact generalized to the 
analytical case the Construction 1.4. 

The case that C induces on B the field star topology of the field (n, U) 
and that U is a separated uniform structure is particularly easy to visualize 
(see [20, p. 42 ff.]). 

PROPOSITION 6.8. If, under the circumstances of Theorem 6.7, the topology 
which is induced on B by C and the field star topology on B given by the 
canonical field (n, U) agree and ifVL is separated, then there is a commutative 
diagram 

E >E 

B 

in which the horizontal maps are embeddings, and the field uniformity U 
agrees with the one induced by Ü via \j/. 

REMARK. It is easy to note that in a point beB we have Kb = Kb if U 
is separated and every field star neighborhood of b in B is of the form B nW 
with a C-neighborhood W of b. 
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§7. Fields of topological rings and modules. In the last two sections we 
produced canonical fields which allow us to represent given topological 
groups as groups of global sections, and in view of the results concerning 
localization we can do this even if we prescribe a topology on the base 
space. We have no means so far to ascertain that the image under the 
Gelfand morphism is large in r(7c). For topological groups in general no 
methods are known which would contribute to this question. However, 
for topological modules, the situation is more satisfactory. In order to 
discuss sectional representation of modules adequately we have to talk 
about fields of topological rings. 

Fields of rings. 
DEFINITION 7.1. A uniform field of rings (p, 93), p:F -• B is a uniform 

field of abelian groups (written additively) for which a continuous function 
(x,y) i-+xy:F v F -> F is defined relative to which each stalk Fb = p~l{b) 
becomes a topological ring. If (n, U), n : E -+ B is a uniform field of topo­
logical abelian groups (written additively), then (n, U) is called a (p, 93)-
module (shorter: n is a p-module) if there is a continuous bilinear map 
(r, x) h+rx:F v E -• E (where, of course F v E = {(r,x)eF x E\p(r) 
= 7i(x)}) relative to which each stalk Eb = 7c_1(b) becomes a topological 
/^-module. 

One immediately deduces 

LEMMA 7.2. If (p, 93), p : F-* B is a uniform field of rings then T(p) is an 
additive topological group and a ring. If (n, U) is a (p, ty-module, then r(n) 
is a r(p)-module. 

It must be pointed out that neither T(p) need be a topological ring nor 
r(7i) a topological T(p)-module. 

This is not even the case in the simplest cases of constant fields E = K x B 
where K is a topological ring, B z. noncompact space and n : E -• B the 
projection, and where the field uniformity on E is the obvious one con­
structed from the uniformity of the additive group of K. Then r(n;) is 
isomorphic to the ring of all continuous functions from B into K, and this 
ring is not topological if B is not compact. 

It is also generally not the case that the closed additive subgroup rb(ri) 
of all bounded sections in r(n) is even a subring. To investigate this question 
further, we need the concept of boundedness in a topological group. A sub­
set C of a topological group G is bounded if for every identity neighborhood 
U of G there is a natural number n such that C £ Un. If (n9 U), n : E -* B is a 
uniform field of topological groups, then a subset C ^ Eis bounded if for 
any U e U there is a natural number n so that C s (U(l)f. A topological 
group G is locally bounded if the neighborhood filter of the identity has a 
basis of bounded sets. A uniform field of topological groups is locally 
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bounded if its field uniformity has a basis of sets U such that (7(1) is bounded. 
The canonical field associated with a locally bounded group and a family 
of normal subgroups is locally bounded. 

Now let G, H, and K be additively written topological abelian groups. 
Let/: G x H -• K be a continuous bilinear map. If {Gb}, {Hb}, {Kb}, beB, 
are families of subgroups of G, H, and K, respectively, we will call them 
compatible with ƒ if f(Gb x Hb) ç Kb. In this case ƒ induces a continuous 
bilinear map fb:G/Gb x ƒƒ/ƒƒ, - K/K„ via fb(g + Gb,h + ff>) = /(g, fc) 

Let now (nG,VLG), nG:EG -> £, etc., be the canonical fields associated 
with G, H, K and the families of subgroups introduced above. The fb 

induce a bilinear function f:EG v EH ^ EK. This function is continuous 
[20, p. 60]. Therefore there is a bilinear function ƒ : r(7iG) x r(%) -• r(nK) 
given by J{G, T)(&) = f{o(b), x(b)) = fb((j(b), x{b)\ If £ is compact, then ƒ is 
continuous; in any case, if/is uniformly continuous on bounded sets, then 
so are ƒ and ƒ, provided that G and ƒƒ are locally bounded [20, p. 60]. In 
this case f(rb(nG) x rb(nH)) ç rb(nK), since ƒ maps bounded sets into 
bounded sets. If G, H and X are connected then we have G £ rb(7rG) etc., 
by 5.20.3 There are some obvious corollaries: 

PROPOSITION 7.3. Let R be a topological ring and {Rb\b eB} a family of 
ideals. Then the uniform field (n, U\n:E -> B associated with this data is a 
field of topological rings, and if multiplication in R is uniformly continuous on 
bounded sets then so is the multiplication of E. Moreover, T(n) is a ring on a 
topological abelian group whose multiplication is uniformly continuous on 
bounded sets if R is locally bounded and its multiplication has this property. 
Also, rb(n) is a subring. If B is compact, then r{n) is a topological ring, 
regardless. If R is connected, then R £ rb(n). (Recall that the quasi-
compactness of B implies rb(n) = r(7r) by 5.9) [20, p. 62]. 

PROPOSITION 7.4. Let R be a topological ring and M a topological R-
module such that scalar multiplication is uniformly continuous on bounded 
sets. Let {Mb\b e B} be a family of submodules of A and (n, U),n:E -• B the 
associated canonical uniform field of topological groups. Then there is a scalar 
multiplication (r, a 4- Mb) v-*ra + Mb:R x E -+ E which is continuous and 
is uniformly continuous on bounded sets. There is a scalar multiplication 
(ƒ»<*) ^fa:C(B,R) x r(;r) given by (f&)(b) = f{b)a{b), which is uniformly 
continuous on bounded sets, if R and A are locally bounded. If B is compact, 
then scalar multiplication is continuous. The subgroup rb(n) is a C\B, R)-
submodule, where Cb of course denotes the ring of bounded functions. 

PROPOSITION 7.5. Let R be a topological ring and {Ib\beB} a family of 
ideals. Let M be a topological R-module and Mbfor each beB a submodule 
containing all linear combinations of elements rm with relb and meM. 
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Let (nR, UK), nR : ER -• B be the uniform field of topological rings associated 
with R and {Ib\b e B} and (nM, UM), nM:EM -> B the uniform field ofabelian 
groups associated with M and {Mh\beB}. Then nM is a topological nR-
module and if B is compact, then T(n^ is a topological T(nR)-module. If 
the scalar multiplication R x M -* M is uniformly continuous on bounded 
sets, then so is the scalar multiplication T(nR) x T(nM)^T{nM).The sub­
group T\nM) is a T\nR)-submodule. 

Partitions of identity. Now we are ready to introduce partitions of 
identity. The following results exemplify the methods; unfortunately, in 
order to cover all cases we have to introduce a rather complicated concept 
which in the discrete case in essence reduces to the idea of partition of 
identity which we encountered in §1. 

DEFINITION 7.6. Let (n, U) be a uniform field of abelian groups. We say 
that a subgroup M c T(n) has approximate bounded partitions of unity 
if for any me M, any U el l and any finite cover C of £, there is a bounded 
subset X £ M and a family {%|WeC} of elements of X such that 
(a) ew(b) = 0(b) for b t W and (b) Ç£ew - m)(b) e 1/(0) for all b e B. 

The significance of the concept lies in the following result which guaran­
tees that a subgroup M of T(n) has a large supply of sections. Since we 
discussed the algebraic (sheaf) case extensively in §§1 and 2, we restrict 
our attention to the analytic case. 

Before we formulate the theorem we note that we define a topological 
space to have dimension n if every compact subset of K has Lebesgue 
covering dimension ^ n and if n is the smallest natural number with this 
property. 

THEOREM 7.7 (The richness theorem for sections). Let Kbea locally com­
pact finite dimensional topological ring and (n,Vi\n\E -» Ba uniform field of 
topological K-algebras; then rb(n) is a C\B, K)-module via (f-(r)(b) 
= f(b) - a(b\ where Cb(B, K) is the K-algebra of all continuous bounded 
functions f :B -• K. Suppose that M is a closed K-submodule of rb(n) which 
has approximate bounded partitions of identity. Then M is a Cb(B> K)-
module. 

PROOF. Let feCb(B9K) and meM. We have to show that f-meM; 
since M is closed in rb(n) it suffices to find anm'eM as close as we wish to 
ƒ • m in rb(n). Let F be a zero neighborhood in K. The set f(B)~ is closed 
and bounded in K, hence compact, and so is of dimension ^ n where 
n = dim K. A finite number of translates of the open set V then covers 
the compact subspace f(B)~, and for reasons of Lebesgue covering 
dimension, this cover has a finite refinement such that at most n + 1 sets 
in the cover overlap. Let C be the finite cover of all W = ƒ " 1(W0) where 
W0 runs through the elements of the cover we have just constructed. 
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For each WeC we have W = ƒ ~1(W0) with W g rw + V for some 
% G K. Then /(c) — rw e V for c e W. Now we take an element U eVL and 
find, by 7.6, a bounded set AT in M and elements ew e X, WeC such that 

(a) ew(b) = (9(b) for b$W9 

(b) (m - £%)(*>) e ^(0) for all beB. 
Since M is a K-submodule by hypothesis, then m' = Yfw ' ewls a n element 
of M. Then we have ƒ• m — m' = f-tn — Y/w'ew = f '(m ~~ Yew) 
+ £ ( ƒ - >v)*%-

The first summand is contained in ƒ • (7(0) which can be made as small 
as we want since ƒ is bounded. 

Because of condition (a) above, the sum (£(ƒ — rw • ew))(b) need only to 
be extended over those WeC for which beW. But since at most n + 1 
elements of C overlap, then this sum has at most n + 1 terms. Moreover, 
(ƒ — *V)(c)e f f°r aU c e W- Since eweX and since n is fixed and X 
bounded, £ ( ƒ — r^) • e^ may be made_as small as we wish. This finishes 
the proof. 

Some remarks should illuminate the rather technical circumstances of 
the richness theorem. 

The existence of approximate bounded partitions of unity is guaranteed 
in the very relevant case of certain operator algebras as we shall see. Note 
that if K is a division ring, then the dimension hypothesis is automatically 
satisfied, since a locally compact vector space over a nondiscrete field is 
finite dimensional. In fact the topological dimensions in this case are 
0, 1, 2, or 4. 

Stone Weierstrass theorem. The preceding richness theorem has as a 
consequence a theorem of Weierstrass type in which the field (n, U) n:E 
-+ B is, in fact, a field of locally convex vector spaces. Let us explain what 
this means in the following definition : 

DEFINITION 7.8. A uniform field (rc, U), n :E -+ B of topological abelian 
groups is called a locally convex field if all stalks Eb are real vector spaces, 
the scalar multiplication R x E -• E is continuous, and if U has a basis 
of elements U such that t/(0) n Eb is convex for every beB. In this case U 
is called a convex entourage. (This definition extends to complex scalars 
in an obvious fashion.) 

A locally convex field is a field of Banach spaces if there is a function 
|| || :E -•[0, oo [ which induces on each stalk a Banach space norm and is 
such that the sets Ue = {(x, y) e E V E\ \\x - y\\ < e} form a basis for the 
field uniform structure. 

If all stalks in a locally convex field (field of Banach spaces) are topologi­
cal algebras (Banach algebras) and the multiplication E v E -+ E is con­
tinuous, then fa, U) is called a field of real (resp. complex) topological 
algebras (Banach algebras). 
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Fields of Banach spaces and algebras are the most important in the 
analytical applications. The space of bounded sections rb(n) is then a 
Banach space (algebra) relative to the sup-norm \\G\\ = sup{||<r(b)|| \beB}. 
For each aerb(n) the function b «-• \\<r(b)\\ is upper semicontinuous 
[20, pp. 11, 115 ff.]. 

We are now in a position to formulate a general Stone Weierstrass 
theorem which should be used in conjunction with the richness Theorem 
7.7 and which shows in effect, the true significance of 7.7. Let us say that a 
space X is quasi-completely regular if for any xe X, and any closed Y ^ X 
with x$Y there is a continuous function f:X -• [0,1] with f(x) = 0,/(Y) 
= {!}• 

THEOREM 7.9 (Stone Weierstrass theorem). Let (n9 VL\n:E -> B be a uni-
form locally convex field over a quasi-compact quasi-completely regular 
space. Consider r(n) as a C(B)-module under (f-G)(b) = f{b)a(b\ where 
C(B) is the C*-algebra of all real or complex valued functions on B. Suppose 
that M Ç r(7i) is a closed C(B)-submodule with the property that the set 
M(b) = {m(b)\m e M} is dense in the stalk Eb for all b. Then M = r(7r). 

PROOF. Let G e r(n). For a given U e U and for any feeBwe find elements 
mbeM such that o(b) - mb(b) e 1/(0), and by continuity we may even 
assume that we find a neighborhood Wb of b in B such that G(C) — mb(c) 
e (7(0) for c e Wb. By quasi-compactness of B we find a finite subcover C in 
{Wb\b e B}. Write mw = mb if W = Wb. Since B is quasi-completely regular 
we find functions fw e C(B, R) such that 0 < fw and fw(b) = 0 for b $ W 
and Yfw — l,WeC. Since M is a C(B)-module, the element m = Yfw ' mw 
is in M. Now G — m = Yfw * (° ~ mw)> We may assume that U is a convex 
entourage. Then Y/W(b) • (a - mw)(b) is a convex combination of the ele­
ments (a - mw){b) which are in U(0) nn~l{b) for all W for which b e W, 
i.e. for which fw(b) 41 U. Hence G — me 1/(0). Since M is closed this 
finishes the proof. 

The richness and the Stone Weierstrass theorems together then have the 
following important consequence, which will be used in the proof of a non-
commutative Gelfand Naimark theorem for C*-algebras. 

COROLLARY 7.10. Let (n, VL\n:E -• B be a uniform field of locally convex 
spaces over a quasi-compact and quasi-completely regular base space B. If M 
is a closed subvector space of T(ri) such that 

(1) M has bounded approximate partitions of unity, 
(2) M(b) is dense in the stalk Eb for each beB. 

Then M = r(n). 

§8. Representations of topological rings by sections in fields. In §§1-4 we 
gave a survey of sectional representation of discrete rings, R. Here comes 
the topological (analytical) version of the theory. 
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Let R be a locally convex topological algebra over the reals or com­
plexes. The most significant applications up to date concern the case that R 
is a C*-algebra. As far as I know there has been no interest in prime ideal 
spaces B other than the space of all primitive ideals, or the space of all 
maximal [respectively, maximal modular] ideals. 

Localization for topological rings. We let n : E -• B0 be the canonical 
sheaf of topological rings associated with R and B, where B0 is the set B 
with the field star topology. We then obtain a Gelfand morphism 
R -• Tb(n) whose kernel is f]B; if R is a semisimple algebra (which is 
automatic if R is a C*-algebra and B = Prim R is the space of all primitive 
ideals), then the Gelfand morphism is injective. 

We are looking for a condition which would ensure that the Gelfand 
morphism is an isomorphism of topological algebras onto its image. The 
topology on R which makes the Gelfand morphism an isomorphism has as 
basic zero neighborhoods the sets f]{U + I\IeB},U ranging through the 
zero neighborhoods of the given topology of R. In order that the Gelfand 
morphism is an isomorphism of topological algebras onto its image it is 
therefore necessary and sufficient that 

(I) for each zero neighborhood U in R there exists a zero neighborhood 
V such that (~){V+ I\IeB} s U. 

Following 6.7 we now produce the field (7?, Ö), ft :E -> B of topological 
algebras obtained from n:E -• B0 by localization of R over B with the 
hull-kernel topology. Then the stalks are algebraically the quotient 
algebras A/Ï where 

r _ n 11 r\ m _i_ n JtW, W a neighborhood of I in B, 
i - [ )v U * f U W + Jh Vdi z e r o neighborhood of A. 

Indeed it was shown in 6.7, that ƒ is a topological group ; that I is stable 
under multiplication from the right is clear from the fact that I is an 
ideal; if aeR then for each U there is a F with aV s I/, hence aï = 
f]v Uw C\J a(v + J) - \)w f)j (U + J\ a n d s i n c e t h i s h o l d s for a11 U w e 

have aï £ /. The topology induced on Eh is generally coarser than the 
topology corresponding to the quotient topology, but agrees with it under 
the hypothesis (I) (6.7). If a e (ƒ)", then for each zero neighborhood U of A 
there is an a0 e Ï and a 6 a0 + U so there is a neighborhood W of ƒ with 
a0ec + U for ceW; hence a e c + (7 + (7 for c € W It follows that a e /, 
therefore ƒ is closed. 

By 6.7 we have c^P) u ( (74-c ) = c. We therefore require 
(II) all ZeBare closed. 
C*-algebras. This condition is automatic in C*-algebras for B ç Prim A. 

Under these circumstances we have / ç /. If for some open F ç B w e 
have a e f]{ï\I e F}, then for each I eV and each 1/ there is a W ç V so 
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that a G f]{U + J\J G W} ç 1/4-7 so a G T = /, since (7 was arbitrary. 
Conversely if aGf]Vthen a G f]{U + J | Je V} for all 17, hence a G 
Uw n i ^ + «^ e ^} ^or a"' ' G ^ where Granges through the neighbor­
hoods of ƒ. Thus a G f]{ï\I G V}. We therefore have the analogue of 1.5: 

LEMMA 8.1. For each open W of B we have f]{I\I G W) = f]W. 

We now have a Gelfand morphism r \-*r:R -* T\iî) which is an iso­
morphism onto its image. If R is complete, then so is the image and the 
image therefore is closed in rb(n). 

We now will discuss the structure of (7?, Ü) as a field of C*-algebras. All 
stalks R/Ï are clearly involutive topological algebras, and each has a 
quotient norm. This norm defines the field uniformity of the canonical 
field of C*-algebras (7?, VLR):n:E* -• B* associated with R and {I\IGB}. 

Now we consider the function | |:Z?->[0,00) given by \a 4- /| 
= inf^supj \\a + J||, where JGW and W ranges over the hull-kernel 
neighborhoods of/, where \\a 4- J\\ = ||â(J)|| is the quotient norm in A/J. 

Clearly a *-> sup{||a(J)|| \J G W} is a seminorm pw and infp^ = limp^ 
where the limit is taken pointwise, since pw is a decreasing net. 

Thus p = inf̂  pw is a seminorm. But p(a) = 0 means 
linv sup{ ||d(J)|| J G W} = 0, i.e. 

lim ||â(J)|| = 0. 

LEMMA 8.2. a G Ï iffhmj^j \\â(J)\\ = 0 (relative to the hull-kernel topology 
onB). 

PROOF. By definition of / we have a G I iff for all e > 0 there is a hull-
kernel neighborhood W such that \\a + J\\ < e for JGW. This holds iff 
lim^,||a(J)|| =0 . 

This shows that a 4- / «-> \a 4- I\:R/I -* [0, 00[ is a well-defined norm. 
Since pw(a*a) = pw(d)2 we have p(a*a) — p(a)2. 

It then follows almost immediately from known facts about C*-algebras 
(e.g. [23, p. 16]) that it agrees with the quotient norm. We thus have p(/)|| 
= \\a + /1| = lim sup{||â(J)|| \J G W}9 I G W 

We now show that the field uniformity Ü has a basis of sets BE = {(ax 

+ /, a2 + I)\I G J5, \\a2 - fll + /1| < e}. 
Indeed, Ü has a basis of sets (l/£)* = {(«i -f- /, a2 +Ï)\I G B and there 

is a neighborhood W of / in B such that JGW implies \\a2 — ax 4- J\\ < c 
inR/J} by §6 (see 6.1). 

If (/, a 4- /) e (l/£)f, then \\a 4- J\\ < s for all J in some neighborhood W 
of/. 

Hence \\a + î\\ = limsupv {\\a + J\\\J G V, I G V} ^ s < 2e, so (I, a 
4- I)GB2E. Thus (l/£)f c B2e. Conversely, assume (/, a 4- I)GBE, then 
||a 4- /|| < e; since ||a + /|| = limFsup{||« + J\\ \JG V}, IGV, then there 
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must be a neighborhood WofI such that sup{||a + J\\ \J e W) < e, whence 
(/,* + /) e (I/.)?. Thus Be g (Ue)l 

Since the Be form a basis of the field uniformity UR (see §6) we have 

PROPOSITION 8.3. With the quotient norm on R/I we have \\a + /1| 
= inf||r supj \\a + J||, J eW, W ranging through the hull-kernel neighbor­
hoods of ƒ, and the field uniformity defined by this norm agrees with both the 
one derived from localization of fc over B and the canonical one associated 
with R and {Ï\I e B}. Thus the field star topology on B* associated with R 
and {I\IeB} is coarser than or equal to the hull-kernel topology. The 
function J *->\\a + J\\:B -+ R is upper semicontinuous in I for all a iff 
I = L 

REMARK 1. Note that we may let W range through the collection of all 
S(r) = {J 6 B\r $J},re R\I. Then \\a + I\\ = infr̂  supr^ \\a + J\\. 

REMARK 2. The function J •-• \\a + J\\:B -+ R is always lower semi-
continuous; thus / = ƒ iff this function is continuous in I for all a e JR. If A 
is separable, then the set of points in which this is the case is a dense Gô 

[23, p. 80]. 
If R is separable, then Prim R has a countable basis for its topology 

[23, p. 64]. Thus a e / ifflim \\a + / J = 0 for all sequences In converging to 
/ in Prim R, provided R is separable. 

Our conclusion so far is that with a C*-algebra A and each subspace 
B £ Prim A we can associate a uniform field (TC, Ü), 7r : Ë -> B of C*-
algebras with stalks Ej = R/I J = {aeR|lim||a + J\\ = 0 as J approaches 
I in B} such that the Gelfand morphism R -• rb(n) injects R isomorphically 
into the C*-algebra of bounded global sections. It has not been investigated 
to my knowledge whether or not R £ rb(n) under the Gelfand representa­
tion if R has an identity. 

However, a coarser localization process was shown to yield the desired 
result. For the following assume that R has an identity. Let Z be the center 
of R. We then have the following 

PROPOSITION 8.4. The function I v+l c\Z\ Prim R -+ Spec Z is a con­
tinuous surjection and is, in fact, the Stone-Cech compactification {Hausdorff-
ization) (which is unique up to natural equivalence) [20, DAUNS and 
HOFMANN]. 

Let Prim'R be the set PrimR together with the coarsest topology 
making the map in 8.4 continuous. Then Prim'R is quasi-completely 
regular in the sense explained before 7.9 (i.e. every point may be separated 
from a closed set not containing the point by a continuous function into 
[0,1]). In fact, if Prim R -+ X is a continuous function into a completely 
regular space it will remain continuous as a function Prim R ~> X. We 
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now proceed with the canonical localization process 6.6 relative to the 
topology on Prim'R. Specifically, for I e Prim R we form the ideal 
ƒ' = Ç\v \JW f]j (U + J\JeW,Wn neighborhood of ƒ in Prim' R, U a 
zero neighborhood of R. In complete analogy to our previous discussion 
we obtain 

PROPOSITION 8.5. /' = {ae#|lim||fl + J\\ = 0 as J approaches I in 
Prim' R} and \\a + I'\\ = inV supj \\a + J||, J GW,W ranging through the 
neighborhoods of I in Prim' R. 

REMARK. It follows that J ' ç l for all I e Prim R ; whence there is a 
morphism R/I' -• R/Ï. Let (n\ If), n:E' -+ Prim' R be the canonical field 
of C*-algebras associated with the family {I'\I e Prim R}. It is isomorphic 
to the one obtained from the canonical field associated with the family 
Prim R by localization relative to the topology of Prim' R, but also iso­
morphic to the one obtained from the canonical field associated with the 
family /, I G Prim R by localization relative to the topology of Prim' R. 

The Gelfand representation R -• r(7i') is injective since its kernel is 
f]{r\I G Prim R} c QPrim R = {0}. However, in this case we may apply 
Corollary 7.10 with M = R', since R' <= Tin') has approximate bounded 
partitions of unity as DAUNS and the author have shown [20, p. 96] (and 
this is not entirely trivial). We finally obtain 

THEOREM 8.6 (The noncommutative Gelfand Naimark theorem). Let Rbea 
C*-algebra with identity and let Prim' R the space of its primitive ideals 
with the coarsest topology making the function I v+l c\Z\ Prim R -• Spec Z 
with the centrum Z of R continuous. Then there is afield of C*-algebras over 
Prim' JR with stalks R/I\ V — {a G R\lim \\a + J\\ = 0 as J approaches I in 
Prim' R} such that the Gelfand isomorphism of R into the C*-algebra of 
global sections in this field is an isomorphism. 

It should be pointed out that an equivalent field representation can be 
given over the space Spec Z in place of Prim' R and this is in fact what was 
done by DAUNS and HOFMANN. Indeed the field n' is constant over the sets 
{ƒ G Prim R\I n Z = Af}, M G Spec Z = Max Z. Moreover, it can be 
shown that ƒ' = f]{J G Prim R\J r\Z = / nZ}; this is due to the fact that 
the function M -> \\a + f] {J G Prim R\J n Z = M) \\ : Spec Z -> R is upper 
semicontinuous [20, p. 100]. Also, V is the ideal generated in R by I n Z. 
We thus obtain the following 

COROLLARY 8.7. If R is a C*-algebra with identity and Z its center, then 
there is a uniform field of C*-algebras over SpecZ such that the stalks are 
of the form R/M' with M' = f]{J e Prim R\J n Z = M}, M G Spec Z, and 
the Gelfand morphism maps R isomorphically onto the C*-algebra of global 
sections. Moreover, the field is the canonical field associated with the family 
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of the M', M e Spec Z, and M' is the ideal generated in R by Mx. 

There are more special classes of C*-algebras which allow particularly 
satisfactory representation theorems. Indeed, let R be a C*-algebra with 
identity and Max R its maximal ideal space. If Max R is Hausdorff (and 
thus Hausdorff compact), then the function I i-> \\a + /||:MaxR -» R is 
known to be continuous. This means that for MaxK as base space, the 
ideals / equal ƒ for all ƒ G Max R. Hence we obtain, by the methods out­
lined, a uniform field {n, VL\ n:E-+ MaxjR of simple C*-algebras with 
identity, such that the Gelfand representation is surjective. We thus have 
the following 

COROLLARY 8.8. Let R be a C*~algebra with identity and with Hausdorff 
maximal spectrum Max R. Then there is afield of simple C*-algebras with 
identity over Max R with stalks R/I, I e Max JR, such that the sequence 

0 -• f)Max R -* R - r(7c) -• 0 

is an exact sequence of C*-algebras; in particular, R/f]Ma,xR £ r(;r). 

This applies in particular to von Neumann algebras (J^*-algebras) 
which are strongly semisimple and whose maximal ideal space is iso­
morphic to the maximal ideal space of the center under ƒ <-• I n Z; we 
thus obtain the following result : 

COROLLARY 8.9. Any W*-algebra is isomorphic as a C*~algebra to the 
C*-algebra of all global sections in afield of simple C*'-algebras with identity 
over the space Max R of maximal ideals of R; the stalk of the field over I is 
RIL 

Note that Max R ^ Max Z is a hyper-Stonean space. A W*-algebra is 
strongly harmonic in the sense of KOH (see 1.28 and preceding discussion); 
thus there is a discrete version of the above representation theorem : The 
sheafs = 0t' associated with R according to §1 is a soft sheaf over a hyper-
Stonean space, and its ring of global sections is isomorphic to the (discrete) 
ring underlying R. This has been exploited extensively by TELEMAN in his 
algebraic reduction theory of von Neumann algebras ([90], [91], and [92]). 

It is possible to associate with each uniform field a sheaf over the same 
base space, namely, the sheaf of germs of local sections, and there is a 
bijection between the set of global sections in the field and the sheaf. If we 
start with a field of C*-algebras, then we will obtain a sheaf of involutive 
algebras, and as involutive discrete algebras, the algebras of global sections 
are isomorphic of the field and the sheaf. However, this approach has not 
yet been systematically investigated ; it certainly should be, since, at least 
for C*-algebras one has a reasonably good field theory, and for arbitrary 
discrete rings, one has a better sheaf theory which, when specified to 



364 K. H. HOFMANN [May 

operator algebras such as W*-algebras, has been shown by TELEMAN to 
be of functional analytic interest. We should note, however, that the 
canonical sheaves associated with a C*- or W*-algebra (as a discrete ring) 
carry less information as the associated fields. 

In the case of the absence of an identity, appropriate modifications of 
these results are available; the image of the Gelfand representation, how­
ever, consists then of all global sections which are small outside members 
of a certain family of compact sets of Prim' R, respectively the complete 
regularization space of Prim R. The better process, however, in this case 
is to embed R into a C*-algebra with identity by taking the centroid Z of R 
and forming the split extension R x Z which is then reduced modulo the 
ideal D = {(a, z)e R x Z\a = — z} where the center of R is identified with 
those elements (/> of the centroid Z for which there is a central zeR with 
(j)(a) = za for all ae R. (Recall that the centroid of K is the set of all additive 
continuous linear maps (fr.R -+ R with cj)(ab) = (j>(a)b = a(j){b).) It can be 
shown that the R = (R x Z)/D contains an isomorphic copy of R as an 
ideal, has center isomorphic to Z, and that its primitive spectrum Prim R 
is a quasi-compactification of Prim R whose Hausdorffization Spec Z is 
the Cech compactification of Prim R. Over the latter we have a field accord­
ing to 8.7 whose C*-algebra of global sections is isomorphic to R, and the 
image of R is then given by all sections vanishing in a suitable fashion on 
the outside of the image of Prim R in Spec Z. For the details see [20] and 
[21]. 

Fields of Hubert spaces. Continuous fields of Hubert spaces have been 
studied by Dixmier and Douady ([24], [26]); their definition deviates 
somewhat from ours. More recently, Takahashi resumed this topic [79] 
and used it, continuing earlier work by Kaplansky, to describe the structure 
of so-called Hubert modules. A Hubert module H is a Banach space and a 
topological module over a C*-algebra R with identity together with a 
sesquilinear map ( | ) : H x H -+ R satisfying the axioms of an inner product 
on a Hubert space, appropriately adjusted to the fact that it takes its values 
in R instead of the complex field. The norm in H is given by |x| = ||(x|x)||1/2. 
Note that every C*-algebra is a Hubert module over itself relative to the 
inner product {a\b) = ab*. As an analytic analogue of some of the module 
representation theorems in §1 and §5 one obtains the following result: 

THEOREM 8.10 (TAKAHASHI). Let Rbea C*-algebra with identity and H a 
Hilbert-module over R. Let Z be the center of R and (p, 93), p :F -• Spec Z 
the canonical field of C*-algebras constructed in 8.7. Then there is a uniform 
field (71, U), n : E -• Spec Z of Hilbert modules over R and a bilinear map of 
uniform fields F v E -+ SpecZ making n into a p-module (see 7.1) in such a 
way that each EM becomes an FM = R/M'-module (see S J for a definition 
of M'\ The Gelfand morphisms R -* T(p) and H -> r(n) induce isomorphisms 
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R 

P) 

X 

1 
X 

H — —// 
4 

i » - r(?i 

such that the diagram 

commutes. If, in particular, R is abelian, then n is a uniform field of Hilbert 
spaces, and upon identifying R with C(Spec R), the scalar multiplication of R 
on r(n) is given by (ƒ • cr)(M) = f(M) • a(M). 

In fact, TAKAHASHI shows in a very precise categorical fashion that the 
study of Hilbert modules over commutative C*-algebras with identity is 
the same as the study of fields of Hilbert spaces over compact Hausdorff 
spaces. More accurately, consider the category Mod whose objects are 
Hilbert modules M over commutative C*-algebras R with identity; since R 
varies, we write (R, M) for these objects. A morphism (R, M) -> (R', M') is 
a pair (ƒ, 0) consisting of an identity-preserving of C*-morphism ƒ :R -• R' 
and a Banach space morphism (/> : M -* M' such that ${r • m) = ƒ (r) • 0(m) 
for reR and MeM. Then Mod will be called the category of Hilbert 
modules. Let Mod be the category whose objects are uniform fields of 
Hilbert spaces n : E -• B over compact Hausdorff spaces B. A morphism 
from n to a field p:F -• C consists of a pair ( ƒ, $), where ƒ : C -> £ is con­
tinuous and 0 is a continuous field map from the pullback field Ef -> C of 
71 over C into the field p ; we thus have a commuting diagram 

B ^ - C = C 

in which the left square is a pullback. The morphisms compose in a fashion 
known to the sheaf and category theoretician: (ƒ, (/>)(ƒ', </>') = (ƒ'ƒ, (</>ƒ)</>')> 
with </>ƒ' defined via the pullback property in Figure 3 below 

The category Mod is called the category of fields of Hilbert spaces. 

THEOREM 8.11 (TAKAHASHI). There is a functor L:Mod -* Mod which 
associates with each Hilbert module (R, M) a field of Hilbert spaces over 
Spec R and a functor F : Mod -• Mod which associates with each field 
n:E -+ Bof Hilbert spaces the Hilbert module (C(B), r(n)) of global sections 
and the pair (L, T) is an equivalence between Mod and Mod. 

This is an analogue of a theorem in commutative discrete ring theory 
which says that the category of /^-modules for commutative rings with 
identity is equivalent to the category of sheaves of commutative local rings 
(with certain restrictions); if one considers the subcategory R-Mod of Mod 
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obtained by fixing R and the subcategory C(B)-Mod of Mod obtained by 
fixing B, then one obtains an equivalence between K-Mod and C(Spec R)-
Mod and we encounter here an analytical analogue of Mulvey's equiva­
lences (see 5.23 ff.). 

Topological f-algebras. We have seen that the representation of topo­
logical rings by global sections in fields is particularly manageable in the 
case of C*-algebras. In [20] DAUNS and the author have introduced the 
class of C-algebras which satisfies enough conditions to make the whole 
theory work. Nevertheless, the field theory has not been very systematically 
tested for many other familiar categories of topological rings. 

However, one class of rings which can be given a natural topology has 
been considered by DAUNS, namely, the class of topological /-rings whose 
sectional representation as discrete lattice ordered rings has been so care­
fully investigated by KEiMEL(see §4). The treatment of/-rings discussed by 
DAUNS in terms of field representation is, in some sense, a counterpart over 
the reals of the C*-algebra case. 

Firstly, we recall that, by 4.16, the space B = Max Irr R of maximal 
irreducible ideals is Hausdorff (and in fact is Hausdorff embedded into 
Irr A). In any /-ring R one writes a+ = 0 v a, a~ — 0 v —a, \a\ = a+ 

•fa". We say that a topological ring with identity is a topological rational 
f-algebra if the sets {a e A\ \a\ < (1/n) • 1}, n = 1, 2, 3 , . . . , form a basis for 
the zero neighborhoods. This topology will also be called the natural one. 

By a result of ISBELL, every /-ring can be embedded into a rational 
/-algebra. DAUNS constructs the canonical uniform field of topological 
/-algebras (TC, U), n : E -• B associated with R and B = Max Irr R and 
shows that the field star topology on B = Max Irr R agrees with the hull-
kernel topology [18, p. 645]. This means that the localization of R = r(7i) 
w.r. to the hull-kernel topology is not needed or, to put it in an equivalent 
fashion, that ƒ = I for all I e B where I is constructed relative to this 
family of ideals. Thus we have a Gelfand representation R -• r(7i) of 
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topological /-algebras with kernel Max Irr R. Note that all stalks R/I are 
totally ordered by 4.14. DAUNS shows that the image of the Gelfand iso­
morphism (j) is actually isomorphic to R/ker</> as topological /-rings 
[18, pp. 640-641]. In order to see how large the image JR is in Y(n) we employ 
a partition of unity argument along KEIMEL'S lines (see 4.7): If a is a non-
negative section in T(n\ and e is a positive rational number, we find for 
each point IeB = Max IrrR a neighborhood U oil and an element aeR 
such that \a(J) — â(J)\ < e • Î(J) for J e U; we may replace a by a+ without 
violating this estimate, hence we can assume that 0 <; a. By the usual com­
pactness argument we cover B by neighborhoods l^ , . . . , Um and find 
elements au..., a„ such that ak ;> 0 and \a — ak\ < e • 1 on Uk. We form 
the ideals Ik = f](B\Uk\ k = 1,. . . , n, and conclude R = lx + ••• + /„ as 
usual. The element b = ax v • • • v ani as any element in lx + • • • -h /„ 
may then be represented in the form b = bx v • • • v bn with 0 ^ bk e Ik, 
k = 1, . . . , n. We let a = (ax A bx) v • • • v (an A bn). We now take an 
arbitrary index j with 1 <; y <£ n, and pick an arbitrary I eU}. 

As an intermediate lemma we observe that in an /-group the relation 
\u — v\ < e implies \(u A W) — (v A W)\ < e for 0 ^ w, v, w: Indeed \u — v\ 
< e is equivalent to u — v < e and v — u < e, i.e. to u — e < v and v — e 
< u. Then (u A W) — e = (w — e) A (W — e) < (u — e) A W < v A W, and 
similarly (v A W) — e < u A W. These two inequalities imply the assertion 
|(M A W) — (i; A w)\ < e. 

Thus, continuing our argument, we may conclude that for any k with 
ƒ G Uk we have 

(i) \(âkAbk)-(âjASk)\(I)<2e.\(l). 
If k is such that I$Uk, then bk e ƒ, and thus (ak A Bk)(I) = {â} A Bk)(I) 

= 0(1). Thus (i) holds in fact for all k = 1,. . . , n. By the distributivity o{R 
as a lattice we have a} = a,- A b = a,- A \^kbk= ^/k (aj A bk). We now 
compute âj(I) = x/k (a} A Bk)(I) < ^k (ak A bk)(I) + 2e • 1(1) = a(I) + 2e • î(/) 
and similarly a(I) < âj(I) + 2e • î(7). 

Hence 
(ii) \â(I) - âj(I)\ < 2s • Ï(I) for ƒ e £/,.. Thus, by the choice of the a,-, for 

I e Uj we have |â(7) - G(1)\ ^ \a(l) - âj(I)\ + \âj(I) - a(I)\ < 2e • 1(1) 
+ s • 1(1) = 3a • î(/). Hence \a - <x| ^3e • Î. 

This shows that indeed the image R of R under the Gelfand morphism 
is dense in r(7t). If, in particular, R happens to be complete in its topology 
then, due to the fact that k is isomorphic to R/f^B, we may conclude that 
R = I » . 

We therefore arrived at the following result which is a slight improvement 
of a theorem of DAUNS. 

THEOREM 8.12. Let R be a topological rational f-algebra with identity 
(endowed with its natural topology). Then there is a uniform field (n, U), 



368 K. H. HOFMANN [May 

n : E -> Max Irr R of totally ordered /-algebras with their natural topology 
with stalks EI = R/I over the compact Hausdorff space of all maximal 
irreducible ideals such that the Gelfand representation (i) maps R into r(n) 
with kernel pjMax Irr R, (ii) is a quotient map onto its image, and (iii) has 
dense image in r(n); in particular, if R is complete relative to its natural 
topology, then R/P|Max Irr R £ r(7t) as topological f-rings. In this case R 
is a C(Max Irr R, R)-module in an obvious fashion. 

This is presumably not the best theorem in this direction yet ; if one 
associates with R the canonical field over Irr R with the stalks Rfl as con­
structed in 6.7, then the Gelfand morphism associated with this field is in 
fact an injection of R into the ring of its global sections since Ç\\XÏ R = (0) 
by 4.4. Is it surjective? After 4.16 and remarks following 1.27 there is a 
continuous retraction \i : Irr R -• Max Irr R which associates with each / a 
unique maximal irreducible ideal \i(l) containing ƒ, and JX is, in fact the 
Hausdorffization map. If one considers the field which one obtains from 
localization according to 6.6 relative to the coarser topology on \vv R 
defined as the coarsest making \i continuous, one seems to be in a situation 
analogous to the one for C*-algebras which resulted in the general Gelfand 
Naimark Theorems 8.6 and 8.7. It is not unreasonable to expect that these 
results carry over to the case of topological /-rings, perhaps to some extent 
even to topological /-rings. 

It is, nevertheless, instructive to compare the field representation 
theorem of a topological, strongly semisimple topological rational ƒ-
algebra in 8.11 with the corresponding sheaf representation over Max Irr R 
according to 4.8. By a remark following 4.16 the sheaf representation 
yields an isomorphism of the discrete /-algebra R onto the /-algebra of 
global sections in a sheaf of local /-algebras over the compact Hausdorff 
space Max Irr R. In the field representation the advantage is two-fold : 
Firstly, the stalks are totally ordered simple /-algebras; secondly, the 
topological structure of the given algebra is fully represented. Just as in 
the case of C*-algebras, the best-known example illustrating the situation 
is an algebra of the form R = C(X, R) for a compact Hausdorff space X 
(the complex version illustrating the C*-algebra situation). 

INDEX 
References in the index are to section numbers whenever a term is 

introduced in a specified section; otherwise it is indicated that a term is 
introduced preceding or following a numbered section by " < ", resp., " > ". 
Example: "/-ideal > 4.1" means that the term /-ideal occurs for the first 
time in the discussion following §4.1. 
approximate bounded partition Baer extension > 3.10 

of unity (identity) 7.6 Baer rings <3.7 
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biregular > 1.31, 3.1 
Boolean decomposition 
bounded; locally bounded 
bounded section 
canonical field 

3.3 
>7.2 

<5.19 
5.15 

centroid >3.1, >8.9 
compatible (with a bilinear map) 
dimension 
field by localization 

>12 
<7.7 

6.5 
fields of Hubert spaces 8.10, 8.11 
field *-topology; field star topology 
field uniform structure 
Gelfand morphism (representation) 

>5.10, 
Grothendieck sheaf 
harmonic ring 
Hausdorff embedding 
hereditary (etc.) 
Hubert modules 
homogeneous uniform field 
hull-kernel topology 
irreducible /-ideal 
Keimel's decomposition, sheaf 
/-ideal 
/-ring 
locally convex field 
local ring 
local /-ring 
locally bounded 
locally zero (section) 
partition of identity 

>5.14 
>5.1 

>1.7, 
<5.20 

<2.1 
<1.28 

1.26 
<3.5 

<8.10 
5.12 

<1.9 
4.3 

4.12 
>4.1 

4.1 
7.8 

<1.26 
<4.10 
>7.2 
>1.5 

<1.10 

patch topology >3.8 
Pierce decomposition; Pierce sheaf 3.4 
presheaf 
quasi-compact 
quasi-completely regular 
quasi-support 

1.1 
<1.9 
<7.9 

>1.23 
Rad E: radical (of a standard sheaf) < 1.8 
regular (maximal ideals) 
relative identity 
ringed space 
section 
semiconnected 
serration 
sheaf 
SIN-group 
0-soft 
smooth 
stalk 
Stone-Cech compactification > 

strongly harmonic ring 
structure group 
support system 
17-close 
uniform field 
uniform field of rings 
uniformly homogeneous 
von Neumann algebras 
von Neumann regular > 1.28, 
weakly biregular 
zero dimensional 

>1.27 
>1.10 

1.2 
5.2 
5.8 
5.2 
1.1 

>5.14 
1.11,4.8 

5.10 
1.1 

•1.27, >3.1 
>8.9 

<1.28 
5.12 

1.5, <4.7 
>6.1 
<5.4 

7.1 
5.12 

>3.2 
<1.31,3.9 

<3.2 
>1.29 

ai/,A/ 
A^ai 
A\aL 

a 
3 
Db 

Eb 

Ë 
<!>(R) 
F 
<S 

r 
y:r->r(7t,B) 
U(n,B) 
r<D(R)(/i, B) 
Uip.B) 

LIST OF SYMBOLS 

>5.7 
> 1.14, >4.6 

<1.22 
1.4 

<3.9 
1.1 
1.2 

>6.1 
1.11 

<3.9 
<2.1 

1.1 
1.3 

1.11 
1.12 
4.7 

Sc 
IrrR 
X 
Rb,R(u) 
I, m 
Kb,K(U) 
A, Aw 
Jl 
V 
(9(B) 
?op 

0> 
0 
n 
(7T, U) 

Rad£ 

6.6 
4.3 

4.12 
1.4 
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1.4 
1.3 

1.19 
>1.10 

1.1 
1.1 

<3.4 
1.11, <4.7 

<6.1 
5.3 

<1.8 
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R-Mod, m-Mod >5.22 H[U] >5.1 
Spec/? <1.9 fl, Ve, Vc

x 6.1 
S(a) <1.9 UG >6.5 
S(A) >1.14 l/' >5.13 
(X,e) > 1.10 
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