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Let ^ be a category, ®, © : <€ x ^ -• <€ two functors, U and N objects 
of (€. Suppose that for any objects, A, B, C of ^ we have natural isomor
phisms, 

<XA,B,C: A ® (B ® Q -+ (A ® E) ® C, 

a i A C : i e ( B e C ) ^ ( i 0 B ) ® C , 

(I) p^rA® l/-*X, p'A:A@N^>A, 

yAtB: A®B-+B®A, y'A$B: A © B -> £ © A, 

p%:A®N-+N, 

and natural monomorphisms 

ÖA,B,C' A(g)(B®C)->A®B<S)A®C, 
( H ) 5^BtC: ( , 4 © £ ) ® C - > , 4 ® C ® £ ® C . 

Roughly speaking the coherence problem is to determine the conditions 
(denoted coherence conditions) in which the arrows obtained by com
bining elements of type (I), (II) and identities with ® and © only depend 
on the domain and codomain of the arrow. This note is to announce an 
answer to this question that was proposed in [6] as raised by H. Bass. 

The first coherence results stated as such are contained in [5] which 
treats the case of only one functor ®. The solution for a more complicated 
situation in closed categories is given in [4]. Other papers with results 
related to coherence problems are listed in the references. 

* * * 

Take a set, X = {xl9 x2,. • •, xp, n, u}9 and construct $t9 the free 
{•, + }-algebra over it. Let ^ be the graph of all formal symbols, for 
x,y,ze s/, 
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<*x,y,z-x(yz) -* (xy)z, u'x,y,z'.x + (y + z) -+ (x + y) + z 

Xx : ux -» x, Â  : n + x -* x, 

px:xu -> x, px: x + rc -> x, 

?*,/ *y - • J>x, ?i,y: x + y - • y + x, 

AJ : nx -> rc, 

PÏ : xn -» ra, 

their formal inverses and 

^x,y,z*^(y + z ) - > X y + XZ, 

<%,**:(* + y)z->xz + yz, 

lx :x -» x. 

Construct f̂, the free {•, + }-algebra over ^ and take on Jf the only 
extension of the graph structure of ^ in which the projections are {•, 4- }-
morphisms. One element of Jf7 is said to be an instantiation if, with at most 
one exception, only elements of ^ of type lx occur in its expression. We 
will denote by J the graph of all the instantiations of (ê. 

Fix now p objects, Cl9 C2 , . . . , Cp, of ^ and let g: J -> # be the mor-
phism of graphs defined on the vertices by the conditions (i) gu = U, 
gn = AT, gxt = Q, for 1 ̂  i ^ p, (ii) g(x + y) = gx © gy, g(xy) = gx ® gy, 
for x,yesé, on ^ by taking each formal symbol onto the arrow of <€ 
determined replacing each subscript by its image by g and such that for 
x, y e */, g(x + y) = gx © gy, g(xy) = gx® gy. This definition depends 
upon the Ct and allows us to define the value of a path with steps in J as 
the product of the images of the steps. 

Let se* be the free {•, +}-algebra over X, with associativity and 
commutativity for • and +, distributivity of • relatively to +, null element 
n, identity element w, and the additional condition na = n for a e sé*. The 
identity map of X defines a {•, + }-morphism ƒ: se -> se*. An element, a, 
of se is defined to be regular if fa can be expressed as a sum of different 
elements of se*, each of which is a product of different elements of X. 

Our coherence conditions require the commutativity of the diagrams 
of a finite family of types. Roughly speaking our conditions are equivalent 
to the commutativity of any diagram that can be constructed taking, for 
each vertex, the iteration by ® and © of not more than four objects, equal 
or different, of # and such that each edge is an iteration by (x) and © of 
arrows of type (I), (II) and identities: we are reduced to a finite number of 
types of diagrams if we drop unnecessary commutativity conditions. 
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With the above definitions we can state the following theorem which is 
our main result. 

COHERENCE THEOREM. If %> satisfies the coherence conditions and a is 
regular then the value of any path from a to b, whose steps are in J', depends 
only upon a and b. 

A detailed exposition of these results will appear elsewhere. 
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