COHERENCE FOR CATEGORIES WITH ASSOCIATIVITY, COMMUTATIVITY AND DISTRIBUTIVITY

BY MIGUEL L. LAPLAZA

Communicated by Saunders Mac Lane, August 5, 1971

Let \mathscr{C} be a category, \otimes , $\oplus : \mathscr{C} \times \mathscr{C} \to \mathscr{C}$ two functors, U and N objects of \mathscr{C} . Suppose that for any objects, A, B, C of \mathscr{C} we have natural isomorphisms,

$$\begin{aligned} \alpha_{A,B,C} \colon A \otimes (B \otimes C) \to (A \otimes B) \otimes C, \\ \alpha'_{A,B,C} \colon A \oplus (B \oplus C) \to (A \oplus B) \oplus C, \\ \lambda_A \colon U \otimes A \to A, \qquad \lambda'_A \colon N \oplus A \to A, \\ \rho_A \colon A \otimes U \to A, \qquad \rho'_A \colon A \oplus N \to A, \\ \gamma_{A,B} \colon A \otimes B \to B \otimes A, \qquad \gamma'_{A,B} \colon A \oplus B \to B \oplus A, \\ \lambda^*_A \colon N \otimes A \to N, \\ \rho^*_A \colon A \otimes N \to N, \end{aligned}$$

and natural monomorphisms

(II)
$$\delta_{A,B,C} \colon A \otimes (B \oplus C) \to A \otimes B \oplus A \otimes C, \\\delta'_{A,B,C} \colon (A \oplus B) \otimes C \to A \otimes C \oplus B \otimes C.$$

Roughly speaking the coherence problem is to determine the conditions (denoted coherence conditions) in which the arrows obtained by combining elements of type (I), (II) and identities with \otimes and \oplus only depend on the domain and codomain of the arrow. This note is to announce an answer to this question that was proposed in [6] as raised by H. Bass.

The first coherence results stated as such are contained in [5] which treats the case of only one functor \otimes . The solution for a more complicated situation in closed categories is given in [4]. Other papers with results related to coherence problems are listed in the references.

* * *

Take a set, $X = \{x_1, x_2, ..., x_p, n, u\}$, and construct \mathscr{A} , the free $\{\cdot, +\}$ -algebra over it. Let \mathscr{G} be the graph of all formal symbols, for $x, y, z \in \mathscr{A}$,

Copyright © American Mathematical Society 1972

AMS 1970 subject classifications. Primary 18D99; Secondary 18D10.

Key words and phrases. Coherent, coherence conditions, distributivity, regular element, graph.

$$\begin{aligned} \alpha_{x,y,z} \colon x(yz) \to (xy)z, & \alpha'_{x,y,z} \colon x + (y+z) \to (x+y) + z \\ \lambda_x \colon ux \to x, & \lambda'_x \colon n + x \to x, \\ \rho_x \colon xu \to x, & \rho'_x \colon x + n \to x, \\ \gamma_{x,y} \colon xy \to yx, & \gamma'_{x,y} \colon x + y \to y + x, \\ \lambda^*_x \colon nx \to n, \\ \rho^*_x \colon xn \to n, \end{aligned}$$

their formal inverses and

$$\delta_{x,y,z} \colon x(y+z) \to xy + xz,$$

$$\delta'_{x,y,z} \colon (x+y)z \to xz + yz,$$

$$1_x \colon x \to x.$$

Construct \mathscr{H} , the free $\{\cdot, +\}$ -algebra over \mathscr{G} and take on \mathscr{H} the only extension of the graph structure of \mathscr{G} in which the projections are $\{\cdot, +\}$ -morphisms. One element of \mathscr{H} is said to be an *instantiation* if, with at most one exception, only elements of \mathscr{G} of type 1_x occur in its expression. We will denote by \mathscr{I} the graph of all the instantiations of \mathscr{G} .

Fix now p objects, C_1, C_2, \ldots, C_p , of \mathscr{C} and let $g: \mathscr{I} \to \mathscr{C}$ be the morphism of graphs defined on the vertices by the conditions (i) gu = U, $gn = N, gx_i = C_i$, for $1 \leq i \leq p$, (ii) $g(x + y) = gx \oplus gy, g(xy) = gx \otimes gy$, for $x, y \in \mathscr{A}$, on \mathscr{G} by taking each formal symbol onto the arrow of \mathscr{C} determined replacing each subscript by its image by g and such that for $x, y \in \mathscr{I}, g(x + y) = gx \oplus gy, g(xy) = gx \otimes gy$. This definition depends upon the C_i and allows us to define the value of a path with steps in \mathscr{I} as the product of the images of the steps.

Let \mathscr{A}^* be the free $\{\cdot, +\}$ -algebra over X, with associativity and commutativity for \cdot and +, distributivity of \cdot relatively to +, null element *n*, identity element *u*, and the additional condition na = n for $a \in \mathscr{A}^*$. The identity map of X defines a $\{\cdot, +\}$ -morphism $f: \mathscr{A} \to \mathscr{A}^*$. An element, *a*, of \mathscr{A} is defined to be *regular* if *fa* can be expressed as a sum of different elements of \mathscr{A}^* , each of which is a product of different elements of X.

Our coherence conditions require the commutativity of the diagrams of a finite family of types. Roughly speaking our conditions are equivalent to the commutativity of any diagram that can be constructed taking, for each vertex, the iteration by \otimes and \oplus of not more than four objects, equal or different, of \mathscr{C} and such that each edge is an iteration by \otimes and \oplus of arrows of type (I), (II) and identities: we are reduced to a finite number of types of diagrams if we drop unnecessary commutativity conditions.

With the above definitions we can state the following theorem which is our main result.

COHERENCE THEOREM. If & satisfies the coherence conditions and a is regular then the value of any path from a to b, whose steps are in I, depends only upon a and b.

A detailed exposition of these results will appear elsewhere.

References

1. J. Bénabou, Structures algébriques dans les catégories, Cahiers Topologie Géom. Différentielle, 10 (1968), 1–126. MR 39 # 5650.

2. D. B. A. Epstein, Functors between tensored categories, Invent. Math. 1 (1966), 221-228.

MR 35 #4276.
3. G. M. Kelly, On Mac Lane's conditions for coherence of natural associativities, commutativities, etc., J. Algebra 1 (1964), 397-402. MR 32 #132.

4. G. M. Kelly and S. Mac Lane, Coherence in closed categories, J. Pure Appl. Algebra 1 (1971), 97-140.

5. S. Mac Lane, Natural associativity and commutativity, Rice Univ. Studies 49 (1963), no. 4, 28–46. MR 30 # 1160.

6. _____, Coherence and canonical maps, Sympos. Mathematica 4 (1970), 231-241.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO, CHICAGO, ILLINOIS 60637

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PUERTO RICO, MAYAGUEZ, PUERTO RICO 00708

222