BESSEL POTENTIALS. INCLUSION RELATIONS AMONG CLASSES OF EXCEPTIONAL SETS

BY DAVID R. ADAMS AND NORMAN G. MEYERS

Communicated by James Serrin, June 17, 1971

1. Let $g_{\alpha} = g_{\alpha}(x)$ be the Bessel kernel of order α , $0 < \alpha < +\infty$, on R^{n} ; g_{α} is the Fourier transform of $(2\pi)^{-n/2}(1+|\zeta|^{2})^{-\alpha/2}$. For $1 , we define a capacity <math>B_{\alpha,p}$ (referred to as Bessel capacity): for $A \subset R^{n}$,

$$B(A) = B_{\alpha,p}(A) = \inf_{f} \int f(x)^{p} dx$$

the infimum being taken over all functions f in $L_p^+ = L_p^+(\mathbb{R}^n)$ —positive functions in the Lebesgue class—such that $g_{\alpha} * f(x) \ge 1$ for all $x \in A$. The capacities $B_{\alpha,p}$ have been studied extensively in [4]. It is an easy consequence of the definition of $B_{\alpha,p}$ that: $B_{\alpha,p}(A) = 0$ if and only if there is an $f \in L_p^+$ such that $g_{\alpha} * f(x) = +\infty$ on A.

Variants of the Bessel capacities occur for instance in [1], [3], [5].

Our purpose here is to announce results on the relations between the B's for various pairs (α, p) . We say that the Bessel capacity B is stronger than the Bessel capacity B' (written $B' \leq B$) if B(A) = 0always implies B'(A) = 0. If in addition, there is a set A such that B(A) > 0 but B'(A) = 0 we say B is strictly stronger than B' (B' < B). These are the relations between B and B'. If both $B' \leq B$ and $B \leq B'$ hold, we say B is equivalent to B' $(B \sim B')$. In addition to the relations among the B's, we also give some results concerning relations between Bessel capacities, Hausdorff measures, and classical capacities $(C_k below)$. These classical capacities can be viewed as a special case of general L_p -capacities of [4] when p = 1 or p = 2.

Notation. wei B = weight of $B_{\alpha,p} = \alpha p$; ord B = order of $B_{\alpha,p} = \alpha$; ind B = index of $B_{\alpha,p} = (\alpha, p)$. By $(\alpha, p) \prec (\beta, q)$ we shall mean either $\alpha p < \beta q$, or $\alpha p = \beta q$ and $\alpha < \beta$.

2. The principal result is

THEOREM 1. If B and B' are two Bessel capacities, (i) $B' \prec B$ if and only if ind $B' \prec \text{ind } B$ and wei $B' \leq n$. (ii) $B' \sim B$ if and only if ind B' = ind B or wei B and wei B' > n.

AMS 1970 subject classifications. Primary 31C15, 31B15; Secondary 26A33.

Copyright © American Mathematical Society 1971

Let k = k(r), r = |x|, be a nonincreasing lower semicontinuous function on $[0, +\infty)$ (referred to as a *kernel*). Define the classical capacity

$$C_k(K) = \sup_{\mu} \|\mu\|_1,$$

the supremum being over all positive Radon measures with finite total variation $\|\mu\|_1$ and whose supports are in the given compact set K. C_k^* denotes the usual extension of C_k to an outer capacity.

We are interested in $k(r) = g_{\alpha,q}(r) \equiv g_{\alpha}(r) \cdot l_q(r)$, where $l_q(r) = (\log 1/r)^{q-2}$ for $0 < r \le r_0 < 1$ and constantly equal to $l_q(r_0)$ for $r > r_0$. For this choice of k we denote C_k^* by $B_{(\alpha,q)}$.

THEOREM 2. (i) If $\alpha p = n$, (a) $1 implies <math>B_{(n,q)} \preceq B_{\alpha,p}$; (b) $1 < q < p < \infty$ implies $B_{\alpha,p} \preceq B_{(n,q)}$. (ii) If $\alpha p < n$, (a) $2 \leq p < q < \infty$ implies $B_{(\alpha p,q)} \preceq B_{\alpha,p}$; (b) $1 < q < p \leq 2$ implies $B_{\alpha,p} \preceq B_{(\alpha p,q)}$.

The relation $B_{(\alpha p, q)} \preceq B_{\alpha, p}$ for $\alpha p < n$, 1 , is false in contrast to (i). An example showing this can easily be constructed using [6].

If h = h(r) is nondecreasing with h(0) = 0, the Hausdorff *h*-measure is defined as

$$H_h(A) = \lim_{\epsilon \to 0} \inf \sum_i h(r_i)$$

the infimum being over countable covers of A by balls of radius $r_i \leq \epsilon, \epsilon > 0$.

THEOREM 3. (i) If $\alpha p = n$,

$$\begin{split} B_{\alpha,p} & \preceq H_h, \quad \text{for } h(r) = (\log 1/r)^{1-p} \qquad (0 \leq r \leq \frac{1}{2}), \\ H_h & \preceq B_{\alpha,p}, \quad \text{for } h(r) = (\log 1/r)^{1-q}, \qquad 1$$

(ii) If $\alpha p < n$,

$$B_{\alpha,p} \leq H_h, \quad \text{for } h(r) = r^{n-\alpha p} \qquad (0 \leq r \leq r_0 < 1),$$

$$H_h \leq B_{\alpha,p}, \quad \text{for } h(r) = r^{n-\alpha p} (\log 1/r)^{1-q}, \qquad q > p.$$

In Theorem 1 and parts (i)(a), (ii)(a) and (b) of Theorem 2, the relation \leq can be replaced by an inequality of the type: $B'(A) \leq QB(A)$, for all $A \subset \mathbb{R}^n$, Q a constant independent of A. Inequalities of this type imply: $B'(A) = +\infty$ implies $B(A) = +\infty$. In part (i)(b) of Theorem 2, the Q may depend on the diameter of A. In Theorem 3,

 $H_h < \infty$ is sufficient for B = 0.

3. The two principal ingredients that go into proving Theorem 1 in the case wei B = wei B' < n are possibly of interest in themselves.

THEOREM 4. Let k_1 and k_2 be kernels and μ a positive Radon measure. Define $u(x) = k_1 * (k_2 * \mu)^{1/(p-1)}(x)$; then, for all x,

$$u(x) \leq Q^{1/(p-1)} \sup_{\substack{y \in \text{Supp } \mu \\ y \in \text{Supp } \mu}} u(y), \quad 1
$$u(x) \leq Q \sup_{\substack{y \in \text{Supp } \mu \\ \mu \in \text{Supp } \mu}} u(y), \quad 2 \leq p < \infty.$$$$

Here Q is a constant depending only on n, the dimension of \mathbb{R}^n . Furthermore, in all cases $u(x) \leq \sup_{y \in co(\text{Supp }\mu)} u(y)$.

THEOREM 5. Let f = f(x) be a nonnegative, extended real-valued measurable function on \mathbb{R}^n , then

$$\left\| g_{\alpha\tau} * f^t \right\|_r \leq Q \left\| f \right\|_p^{t-\tau} \left\| g_\alpha * f \right\|_q^{\tau},$$

with Q a constant independent of f and $0 , <math>1 \le q \le \infty$, $0 < \tau < 1$, $0 < t - \tau < p(1-\tau)$, and $1/r = (t-\tau)/p + \tau/q$. Here $\|\cdot\|_p$ denotes the usual norm in L_p .

Details of the above theorems will appear elsewhere along with construction of the Cantor sets needed to get the relation \prec in Theorem 1.

References

1. N. Aronszajn and K. T. Smith, Functional spaces and functional completion, Ann. Inst. Fourier Grenoble 6 (1955/56), 125–185. MR 18, 319.

2. L. Carleson, Selected problems on exceptional sets, Van Nostrand Math. Studies, no. 13, Van Nostrand, Princeton, N. J., 1967. MR 37 #1576.

3. B. Fuglede, On generalized potentials of functions in the Lebesgue classes, Math. Scand. 8 (1960), 287-304. MR 28 #2241.

4. N. G. Meyers, A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand. 26 (1970), 255–292.

5. J. Serrin, Local behaviour of solutions of quasi-linear equations, Acta Math. 111 (1964), 247-302. MR 30 #337.

6. S. Taylor, On the connexion between Hausdorff measures and generalized capacity, Proc. Cambridge Philos. Soc. 57 (1961), 524-531. MR 24 #A3254.

UNIVERSITY OF MINNESOTA, MINNEAPOLIS, MINNESOTA 55455

Current address: (David R. Adams) Rice University, Houston, Texas 77001

970