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BY DANIEL GORENSTEIN AND KOICHIRO HARADA 

ABSTRACT. In §1, we describe the presently known finite simple 
groups of 2-ranks 3 and 4 and discuss in outline the existing 
methods of characterizing such groups by means of their Sylow 
2-subgroups. In the balance of the paper, we illustrate these 
techniques concretely by classifying all simple groups whose Sylow 
2-subgroups are isomorphic to those of £2(5) for some odd q. 

1. Simple groups of low 2-rank. The 2-rank of a group G is, by 
definition, the maximum rank of an abelian 2-subgroup of G. Thus a 
group of 2-rank 0 is of odd order and so is solvable by the Feit-
Thompson theorem [59]. A group of 2-rank 1 has either cyclic or 
generalized quaternion Sylow 2-subgroups and so is not simple (as­
suming it is of composite order) by Burnside's transfer theorem and a 
theorem of Brauer and Suzuki [58]. Recently it has been shown by 
Alperin, Brauer, and Gorenstein [56], using various previously 
established classification theorems, that the only simple groups of 
2-rank 2 are the groups 

L2(q), Lt(q), Uz(q), q odd, £/3(4), An, and Mn. 

Work on the determination of simple groups of 2-rank 3 and 4 has 
only recently begun. As in the case of groups of 2-rank 2, the analysis 
divides into two major parts: 

A. Determination of the possible Sylow 2-subgroups of a simple 
group of 2-rank 3 or 4. 

B. Classification of simple groups having Sylow 2-subgroups of 
each of the types specified under A. 

At the present time, work on problem A is only just beginning. 
However, whatever the outcome of such an analysis, the list of possi­
ble Sylow 2-subgroups will obviously include those of all the pres­
ently known simple groups of 2-rank 3 or 4. Thus it will be instructive 
to list these groups. 

An expanded version of an Invited Address delivered by the first author under the 
title Simple groups of low 2-rank on April 9, 1971 to the 684th meeting of the Society 
in New York City; received by the editors April 27, 1971. 

A MS 1970 subject classifications. Primary 20D05, 20-02; Secondary 20D20. 
Key words and phrases. 2-rank, groups of type Gi(q)t balance, connection, p-

stability, 2-generation. 
1 This research was supported in part by National Science Foundation Grant GP 

16640. 

Copyright © American Mathematical Society 1971 

829 



830 DANIEL GORENSTEIN AND KOICHIRO HARADA [November 

In the table below the groups Re(q), q an odd power of 3, Ji , J%, Jz, 
Mc, H-S, L, and C3 denote respectively the Ree groups G\(q) of char­
acteristic 3, J anko's three groups of respective orders 23-3 -5 • 7 • 11 • 19, 
27-33-52-7, 27-35-5-17 -19, McLaughlin's group of order 27-36-53-7-11, 
the Higman-Sims group of order 29-32-53-7 • 11, Lyons group of order 
28*37-56-7-ll-31-37-67, the existence of which has recently been 
established by Sims [8], and the smallest Conway group Cz of order 
2 1 0-3 3-5 3-7-l l -23. Moreover, D\(q) designates the "triality" twisted 
A(<Z). 

In addition, we have placed a + or — in the final column according 
as the given group or family of groups has or has not been charac­
terized at the present time in terms of the isomorphism class of its 
Sylow 2-subgroups.2 

A few comments are in order. First, the groups Re(q) have not 
quite been characterized. Walter [39] has shown only that a simple 
group G with abelian Sylow 2-subgroups of rank 3 is either isomorphic 
to £2(8), J i , or is of "Ree type." Although groups of Ree type have 
been studied intensively, it is still unsettled whether the groups 
Re(q) are the only such groups. However, the subgroup structure of 
the groups of Ree type so closely resembles that of the Ree groups 
themselves that one acts, in practice, as though the Ree groups have 
been classified, even though this is not, strictly speaking, correct. 

Furthermore, considerable work has been done on simple groups 
with Sylow 2-subgroups of type jD2n/Z2, n^3, which occur as Sylow 
2-subgroups of Lt(q), g = 3 (mod 8) and U±(q), q^S (mod 8) by 
D. Mason of Cambridge University and it is likely that also these 
groups will soon be characterized by their Sylow 2-subgroups. 

Finally, it can be anticipated that the list of 2-groups S to be de­
termined under A will also include those of the form S = SiXS2, 
where Si, S2 are groups which occur as Sylow 2-subgroups of simple 
groups of 2-rank 2. Thus Si, S2 are either dihedral, quasi-dihedral, 
wreathed, or of type Uz{4). The reason for this is that the nature of 
the analysis that will be carried out under A will most likely not 
utilize the full force of the assumption of the simplicity of G and so at 
this stage one will not be able to rule out the possibility that G might 
have the structure of a direct product of simple groups. 

2 ADDED IN PROOF. Work on similar characterizations of many of the groups in the 
table is in progress and in some cases has been completed. Mason is now treating 
L*(q), Ut(q) for all odd q, while R. Solomon of Yale University is working on C3. 
Uz(8) and Uz(16) have been considered by Collins and Griess independently and 
H=Sby Gorenstein and Harris jointly. Thus only the families L$(q), U&{q), PSP(6, q), 
q odd, Ls(q), g s - l (mod 4) and Ua(q), g s l (mod 4) remain to be investigated. 



1971] FINITE SIMPLE GROUPS OF LOW 2-RANK 831 

RANK 3 

Odd 
Characteristic 

Even 
Characteristic 

Sporadic 
Groups 

Odd 
Characteristic 

Even 
Characteristic 

Alternating 
Groups 

Sporadic 
Groups 

Gt(a), D2M, Re (g) + 

U(8), 52(8), + 

Ji, Ma + 

RANK 4 

PSp(4, q) + 
U(q), Utiq), U(i), Us(q), PSp(6, q) 
U(q), q=-l (mod 4), Ut(q), q = \ (mod 4) -

L,(16), L,(4) + 
17,(16) 

At, A9, Am, Au + 

Ji, Ji, Mn, Mw, MC, L + 
H-S, d 

At the present time, the structure of all groups G having such a 
Sylow 2-subgroup 5 = Si X & with Si, S2 dihedral has been determined 
[33]. In particular, it has been shown that G is not simple. Using the 
methods of [33], F. Smith of Ohio State University is investigating 
the case that Si is dihedral or quasi-dihedral and S2 is quasi-dihedral.3 

The procedure for characterizing each of the known simple groups 
or families of groups of 2-rank 3 or 4 by their Sylow 2-subgroups is 
very uniform in conceptual outline, although somewhat variable in 
technical detail. In this paper we shall illustrate the entire process by 
presenting such a characterization of the families Gziq) and JD%(q), 
q odd (which have isomorphic Sylow 2-subgroups for a given value of 
q). We note that for q = 3f 5 (mod 8), the Sylow 2-subgroups of these 
groups are also isomorphic to those of M12. 

3 ADDED IN PROOF. This work has now been completed. 
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Each such characterization theorem rests ultimately on a prelim­
inary characterization theorem, given in terms of the structure of the 
centralizer M = CG(%) of a central involution z of G (i.e., an involution 
z in the center of a Sylow 2-subgroup 5 of G). This preliminary 
theorem asserts that if M is isomorphic to the centralizer M* of a cen­
tral involution z* of one of the known simple groups G* of 2-rank 3 or 
4 (or, more generally, of an extension G* of such a simple group by a 
group of outer automorphisms of odd order), then G is, in fact, isomor­
phic to G*. (In certain special cases, such as As and A9i there is more 
than one choice for G*.) In the case of the groups Gz{q), D\{q)> q odd, 
the required result has been obtained by Harris [ l7j , extending a 
prior characterization of these groups established by Fong and 
Wong [14], [15]. 

Thus, in effect, the entire aim of the analysis is to show, in our 
abstract simple group G with specified Sylow 2-subgroup 5, that the 
structure of M~CQ{Z) is the same as that of the groups G* we are 
trying to characterize. After an initial study of the possible fusion 
patterns for the involutions of G and using prior characterization 
theorems to obtain the structure of M/(z), one is able to show that 

M/0(M) 9* M*/0(M*). 

Hence the bulk of our work involves a proof that 0(M) =0(M*). 
For most, but not all, of the known simple groups of 2-rank 3 or 4 and, 
in particular, for the groups G2(g), Dl(q), q odd, one has that 0(M*) = 1 
and consequently in these cases our task is reduced to demonstrating 
t ha tO(M) = l . 

To accomplish this, one must show that if G is a minimal counter­
example to the given classification theorem, then, in fact, G is a 
balanced group—that is, for any pair of commuting involutions a, b 
of G, 

0(CG(a)) r\ CGQ>) C 0(CG(b)). 

(In the case that 0(Jkf*)5^1, other variations of balance must be 
used. See [31], [33], [34].) At this point one is able to invoke Gold-
schmidt's improved version [48], [49] of the so-called "signalizer 
functor" theorem [50] together with some form of the so-called 
"balanced" theorem [53], [54] to show that G possesses a strongly 
embedded subgroup. Bender's theorem [40], [41] then yields a con­
tradiction. 

The proof of balance is itself fairly complicated. For the groups of 
2-rank 3 and 4, it involves the prior construction of what we call 
"covering p-local subgroups," a notion which was first used effectively 
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in the classification of groups with quasi-dihedral and wreathed 
Sylow 2-subgroups [55]. 

There is some evidence that in classification problems concerning 
simple groups of 2-rank at least 5 one may be able to get by without 
having to construct such covering p-local subgroups. If this turns out 
to be the case, it would provide a justification, if one feels that such is 
needed, for considering groups of 2-ranks 3 and 4 independently. 

We remark also that since one proceeds inductively in any of these 
classification theorems, it is preferable not to demand, in prac­
tice, that G be simple, but only that G be fusion-simple (i.e., 
0(G) =Z(G) = 1 and 02(G) =G). Thus, in fact, it is necessary to clas­
sify all fusion-simple groups with the specified type of Sylow 2-sub­
groups. For example, the nonsplit extension GL(3f 2) -Eg2) of GL(3, 2) 
by an elementary abelian group of order 8 is a fusion-simple, but non-
simple group with the same Sylow 2-subgroup as Mi2. 

Finally a word about problem A—the determination of the 2-
groups which can occur as Sylow 2-subgroups of fusion-simple groups 
G of 2-rank 3 or 4. This problem has a natural subdivision; namely, 

(I) The 2-local subgroups of G are all 2-constrained (in particular, 
solvable). 

(II) Some 2-local subgroup of G is not 2-constrained. 
The methods of Thompson's iV-group paper [45], particularly 

§§13, 14, IS, appear to be applicable to problem (I), which seems to 
be the more difficult of the two. 

At the present time, we are investigating problem A in the special 
case that G has sectional 2-rank at most 4; that is, every section of G 
has 2-rank at most 4; equivalently, G involves no elementary abelian 
2-groups of order 32. The advantage of considering this special case is 
that the condition "sectional 2-rank at most 4" carries over to homo-
morphic images as well as to subgroups and so is inductive, whereas 
the more general condition "2-rank at most 4" is not inductive. We 
note that, by a result of Mac Williams [44], this special case does in­
clude all groups in which SCN3(2) is empty; that is, in which a Sylow 
2-subgroup possesses no elementary abelian normal subgroups of 
order 8. 

2. Groups of type G2(<z), q odd. As is customary, a group G is said 
to have Sylow 2-subgroups of type X if a Sylow 2-subgroup of G is 
isomorphic to that of the group X. 

In the balance of this paper, we shall classify all fusion-simple 
groups and, in particular, all simple groups with Sylow 2-subgroups 
of type G%(q), q odd. A Sylow 2-subgroup S of G2(g), q odd, can be de­
fined by generators a, b, t, u, subject to the relations: 
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k b] = [*> A = *> a ' = 6, 0M = o - 1 , 6W = b~\ 
< / = j * " = / » = « « = 1, 

for some integer n^2. 
Our main result is the following: 

THEOREM A. If G is a perfect fusion-simple group with Sylow 2-sub-
groups of type G2(q), q odd, then G is isomorphic to one of the following 
groups: 

(2) 2 

GL(3, 2)-Es , Mi2, G2M, or D*(r) for some odd r. 

Using Harris' theorem [17], mentioned in the preceding section, 
we actually derive Theorem A as a corollary of the following result: 

THEOREM B. If G is a fusion-simple group with Sylow 2-subgroups 
of type G2(q), q odd, then one of the following holds: 

(i) G has two conjugacy classes of involutions and 

G^Mn or GL(3 ,2) -Ef ; 

(ii) G has one conjugacy class of involutions and if M=CQ(Z), Z an 
involution of G, then 

(a) 0(M) = 1; 
(b) M'^SL(2, q%) * SL{2, q2) for suitable odd qlf q2; 
(c) M/M' has Sylow 2-subgroups of order 2. 

We remark that our proof of Theorem B is independent of Harris' 
theorem, which is thus needed solely to derive Theorem A from 
Theorem B. 

Our notation will be standard and will include the use of the "bar" 
convention for homomorphic images. 

3. Balance, ^-stability, and Harris' theorem. In this section we 
describe the three results which will be basic for the proof of Theorems 
A and B. 

First, it is immediate from the definitions that in a balanced 
group G, O is an -4-signalizer functor on G for every elementary 
abelian 2-subgroup A of G of rank at least 3. I t follows therefore from 
Goldschmidt's fundamental result concerning ^4-signalizer functors 
that the group 

(0(C0(a)) \aGA#) 

is of odd order. 
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Because of this result, the "2-generated" case of the balanced 
theorem of [53], [54] now holds in balanced groups of 2-rank at least 
3. We recall that a group H is said to be 2-generated if H is generated 
by its subgroups NH(Q), where Q ranges over the subgroups of 2-rank 
at least 2 in a fixed Sylow 2-subgroup of H. Likewise we recall that a 
group G is connected if for every pair of noncyclic elementary abelian 
2-subgroups A, A' of a fixed Sylow 2-subgroup S of G, there exists a 
chain of noncyclic elementary abelian 2-subgroups 

A = Ah A2, • • • , An = A' 

of S such that either 

Ai ÇI Ai+i or Ai+i Q Ai (1 ^ i g n — 1). 

Goldschmidt's theorem together with the argument of §§4.2 and 
4.3 of [53] yields the following result: 

THEOREM 3.1. If G is a balanced, connected group of 2-rank at least 
3 with 0(G) — 1 in which the centralizer of every involution is 2-generated, 
then 0(CG(X)) = 1 for every involution x of G. 

We also recall from [55] that a group H with 0P(H) =̂  1, p odd, is 
said to be p-stable with respect to the ^-subgroup P of H provided 

(a) Pr\0p>,p(H) is a Sylow ^-subgroup of 0p>tP(H); 
(b) Either P is normal in a Sylow ^-subgroup of H or PK/K con­

tains 0P(H/K) for every normal subgroup K or H; and 
(c) For any nontrivial normal subgroup PQ of P such that 0V> (H)Po 

is normal in Ü, we have 

ACH(PO)/CH(PO) C OP(NH(PO)/CH(PO)) 

for every subgroup A of P such that [P0, A, A] = l. 
We can now state the extended form of Glauberman's ZJ-Theorern 

[55, Theorem 2.7.2]. 

THEOREM 3.2. If H is a group with 0P(H) 7̂  1, p odd, which is p-con-
strained and is p-stable with respect to the p-subgroup P of H, then 

E = Op>(H)NH(Z(J(P))). 

Theorem 3.2 is an essential tool in the construction of covering 
£-local subgroups. 

Finally we state Harris* theorem. 

THEOREM 3.3. Let G be a fusion-simple group with Sylow 2-sub­
groups of type G2(q), q odd. If z is an involution in the center of a Sylow 
2-subgroup of G and if M=Co(z) has the structure specified in Theorem 
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B(ii), then G possesses a normal subgroup of odd index isomorphic to 
G2{r) or D\(r) for some odd r. In particular, if G is perfect, then GÇ=G2(r) 
or D\(r). 

We shall also need a fundamental characterization of Afia, ob­
tained by Brauer and Fong [29]. However, we prefer to state this re­
sult in the next section as part of our discussion of the fusion of in­
volutions of G. 

4. The involutions of G. We let G be a fusion-simple group with 
Sylow 2-subgroup 5 defined by the generators and relations (1) and 
we fix this notation for the paper. 

Our object in this section will be to determine the fusion pattern of 
involutions of G and to obtain partial information concerning the 
structure of the centralizers of the involutions of G. 

We introduce some additional notation. We set 

Zi = of *, S2 = b%n *, Z = 3i22, Z = (Zh S2), 

W = (a) X (b), Qi = (ab-\ zxt), Q2 = (ab, zxtu), 

R = GiQs, T = (W, u), Vi = (W, t), and V2 = (W, tu). 

The various parts of the following omnibus lemma are easy con­
sequences of the definitions of the specified subgroups of S. 

LEMMA 4.1. The following conditions hold: 
(i) Z(S) = <*>. 
(ii) Oi(S)=S, Qi(S') = <*i. *2>. 
Ciii) S is connected of 2~rank 3. 
(iv) The centralizer of every involution of S has 2-rank 3. 
(v) Let A be an elementary abelian 2-subgroup of S of order 8. Then 

Cs(A) =A and if ZCA CR, then NS(A)/A9*DB. 
(vi) Aut(S) is a 2-group and Aut(R) is a {2, 3}-group. 
(vii) R is the central product of Qi and Q2, each of which is isomorphic 

to <22n+1- Moreover, R = QiQ2 is the unique representation of R as a cen­
tral product of generalized quaternion subgroups. 

(viii) W£ÊZ2n XZ2n and ti^W) = Z . 
(ix) Cs(Z) = T=(Wy u) and u inverts W. 
(x) T contains %\T\ elementary abelian subgroups of order 8. 
(xi) T, V\y V2 are the maximal subgroups of S containing W and 

V^V2^Z2nfZ2. 
(xii) Qi{ub) is quasi-dihedral of order 2n+2 , i — 1, 2. 

The following results, respectively, by Brauer-Fong [29] and Fong 
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(unpublished) will be important to us.4 

THEOREM 4.2. If w = 2, then the following conditions hold: 
(i) G has one or two conjugacy classes of involutions. 
(ii) If G has two conjugacy classes of involutions y then G=Mu or 

GL(3, 2 ) . £ f . 

THEOREM 4.3. If n è 3, then G has only one conjugacy class of involu­
tions. 

In the course of the proof of Theorem 4.3, Fong has also obtained 
the following additional two results: 

LEMMA 4.4. If X is a finite group with Sylow 2-subgroup S and X has 
no isolated involution, then 

Nx(Z)/Cx(Z)^Sz. 

LEMMA 4.5. If G has only one conjugacy class of involutions, then 
(i) All involutions of R — (z) are conjugate in CQ(Z). 

(ii) CQ{Z) has a normal subgroup of index 2 with Sylow 2-subgroup R. 

In view of Theorems 4.2 and 4.3, Theorems A and B hold if G has 
more than one conjugacy class of involutions. We can therefore as­
sume henceforth that G has only one conjugacy class of involutions. 
We set M= CQ{Z) and H = M/0(M) and fix this notation as well. 

PROPOSITION 4.6. We have 

W - Zx X Z2 9É SL(2, qi) * SL(2, q2), 

with qi odd and Qi a Sylow 2-subgroup of L», i = 1, 2. 

PROOF. By Lemma 4.5(ii), M has a normal subgroup K of index 2 
with Sylow 2-subgroup R. We have M'QK. On the other hand, the 
focal subgroup i?i = (x~1a;m|#£>!>, # m E S , mÇzM) is a Sylow 2-sub­
group of M'. However, by Lemma 4.5(i) and the structure of R, it 
follows that RQRi. Hence R = Ri and we conclude that 02(M) =K. 
Thus 02(K)=K. 

Now R = QiQ2=iQ2n+1 * Ö2n+1, by Lemma 4.1(vii), and so R/(z) 
^D2«XD2«. Setting M = M/(z), we have that R = QiXQ2 is a Sylow 
2-subgroup of K and Rç=D2nXD2». Furthermore, our conditions im­
ply that 02(K) = K and 0(K) = 1. If n > 2, we apply the main result of 

4 Because Fong's results are unpublished, we shall for completeness present a 
proof of Theorem 4.3 and Lemmas 4.4 and 4.5 in an appendix to this paper. 
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[33] to obtain that RçiK' and that K' = LiXL2, where Z t^PSZ,(2, g<) 
or A 7, i = 1, 2. If JL,- denotes the inverse image of L,- in Z, then by the 
structure of Ry L* does not split and so by the results of Schur 
Li=SL(2, qi) or A?, i = 1, 2, where, as usual, An denotes the nonsplit 
extension of Ai by Z2. Since ^ is a Sylow 2-subgroup of L±L2y it 
follows that R is the central product of RC\Li and RC\L2, each of 
which is generalized quaternion. We conclude therefore from Lemma 
4.1(vii), for a suitable choice of the numbering of L\ and L2, that 
Qi = RniXi and hence that Qi 'IS a Sylow 2-subgroup of Zt-, i = 1, 2. 

Since w& leaves Qx and Q2 invariant, ub leaves Lx and Z,2 invariant, 
whence also üb leaves L\ and L2 invariant. Hence if Li=A?, it would 
follow that Li{üb)=:Sn or -47XZ2. However, by Lemma 4.1(xii), the 
Sylow 2-subgroup Qi(üb) of Li(üb) is dihedral of order 16 (as n — 3 in 
this case). Since the Sylow 2-subgroups of 57 and ^4?XZ2 are not 
dihedral, we reach a contradiction and so Li=SL{2, g*), i = l, 2. 
Furthermore, we have that M = K(üb) with K/LiL2 abelian of odd 
order. Since üb leaves each Li invariant, it follows directly from the 
structure of PTL(2, qi) that M/LiL2 is abelian, whence also JF/LiL2 

is abelian Thus M' = LXL2 and so all parts of the lemma hold in this 
case. 

Suppose next that w = 2. In this case we apply the main result of 
[39] to obtain that RÇ1K' and that either i?^P5L(2 ,16) or 
Kf = FxXF2l where Fi^PSL(2, qt), gt = 3, 5 (mod 8), g t-^S, or F& 
Z2XZ2,i = l,2. Now K does not possess a 5-element which normalizes, 
but does not centralize Ry since otherwise Aut(-ft) and hence also 
Aut(i£) would be divisible by 5, contrary to Lemma 4.1(vi). In 
particular, it follows that K is not isomorphic to P5L(2, 16) and, in 
addition, if K' is elementary of order 16, then K/K' is a 3-group. 
Moreover, in the latter case, Lemma 4.5(i) implies that K/Kf is ele­
mentary of order 9, whence K is of the form LiXL2y where 
Li=PSL{2, 3), i = ly 2. Letting Li denote the inverse image of Li 
in Mf we see exactly as in the case of n>2 that all parts of (ii) hold. 
Likewise if Pi^PSL(2, q{) for both i = 1 and 2, we let Z{ denote the 
inverse image of Pi in M and reach the same conclusion. 

Suppose finally that Fi = Qi^Z2XZ2 and Fj9ÉPSL(2y gy), *Vj\ 
say i = l, j = 2. Since 02(K)=Ky K contains a 3-element x, which 
normalizes, but does not centralize Qi. By the Frattini argument, we 
can take x to normalize R. But by the structure of S, we have that 
CM(R) has a normal 2-complement and that N$[(R)/CM(R) has an 
elementary abelian normal subgroup of order 9 and index 2. Since 
üb normalizes R and does not centralize (5i, we see that we can, in 
fact, choose x to be inverted by some element v of S — R. How 
ever, PTL(2yq2)/PSL(2yq2) is abelian and (XyV)^Sz normalizes 
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P2^PSL(2, q2). Hence *ECû(Pt)XF* and so Ci(P%)DQi. Since 
Qi^Z2XZ2y we conclude that C ^ ( ^ 2 ) = ^ 4 = P 5 L ( 2 , 3). Letting Lu 

L2 be the inverse images of CM(P%) and P2 in M respectively, it follows 
as in the preceding cases that the lemma holds. 

In view of the proposition, we see that Theorem B will be estab­
lished once we prove that 0(M) = 1. This we shall do in the balance 
of the paper. 

The integers qit q2 of the proposition are uniquely determined by G 
inasmuch as G has only one conjugacy class of involutions. We call 
them the characteristic powers of G. 

As a corollary of the proposition, we obtain the following additional 
properties of M : 

LEMMA 4.7. The following conditions hold: 
(i) 37 = ZiIiCif(S)<fl8>. 
(ii) If A is an elementary abelian subgroup of R of order 8, then 

0(CÛ(Â))=_0(CÛ(S)). 

(iii) CM(Z) has a normal 2-complement which is the unique maximal 
T-invariant subgroup of M of odd order. 

PROOF. By Lemma 4.1(vi), Aut(5) is a 2-group. Moreover, we have 
already shown in the preceding proof that "M/L\L2 is abelian. Hence 
LiL^S<\M and so by the Frattini argument, M = LIL2NM(S) 

= LIL2CM(S)S. Since S = R(üb) and RQLiL2l we see that (i) holds. 
Again with M = M/(z) and with A as in (ii), we have that A is a 

"diagonal" four-subgroup of LiL2; that is, the image of A in L\L2/Li is 
a four-group for i = l, 2. Since Ci{(Wi) — Wi for any four-subgroup 
ffîiof Z», i = 1, 2, we conclude that CijJ^Â) = A, whence CzjLt(A) = A. 
Since CM(S) has a normal 2-complement which centralizes -4, (ii) 
now follows at once from (i). 

Similarly the image of Z = (zi, z2) in LiL2/L{ is an involution for 
i = l, 2. Since Ci^Vi) has a normal 2-complement for any involution 
Vi of Li, we see that Cl{(2) has a normal 2-complement and conse­
quently Di = 0(CZifë)) is a normal 2-complement in Cz{(Z)t i = l, 2. 
Moreover, Z>t- is invariant under {Tr\Qi){ub) and Q%{ub) is a Sylow 
2-subgroup of Xi{ub) with Qi{üi) being quasi-dihedral, i = l, 2. I t 
follows now from the structure of Li{üb) that £\- is, in fact, the unique 
maximal (rnQ t)(w5)-invariant subgroup of Li of odd order. We 
therefore conclude that Dj52=zO{Cz£%(Z)) and that DXD% is the 
unique maximal T-invariant subgroup of L\L2 of odd order. Clearly 
then by (i) we have that DID20(CM{S)) is a normal 2-complement in 
CM(Z) and is the unique maximal T-invariant subgroup of M of odd 
order, proving (iii). 

Finally we prove 
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LEMMA 4.8. The centralizer of every involution of G is 2-generated. 

PROOF. Since G has only one conjugacy class of involutions, we 
need only prove that X = TS,2(M) = M. Since S has 2-rank 3, certainly 
0(M)NM(S)QX. Hence, by Lemma 4.7(i), it will suffice to show that 

Let Xi be arbitrary elements of order 4 in Qi, i = l, 2. Then 
U—{xiX2, z) is a four-subgroup of S and so, for i = l, 2, Czt(#») 
= Czi(U)QX. But by the structure of SL(2y g*), one checks that Li 
is generated by its subgroups CZi(xi) as Xi ranges over the elements 
of order 4 in the Sylow 2-subgroup Qi of Li except in the case gt = 3 
or 5. Thus if g t > 5 , we conclude that L j C J , However, if g» = 3, then 
LiQN]a(R)QX. On the other hand, if gt = 5, we use the four-
subgroup Ui — {ubyz) __and check that £* = (iVzt.(()t),Cz»(w5)) 
= (NZi(R), CiiCÜ^QX. Hence I i I 2 C X in all cases and the 
proposition is proved. 

5. Subgroup structure of G. By Theorem 3.3, Theorem B implies 
Theorem A. Thus, in proving these theorems, we can assume hence­
forth that G is a minimal counterexample to Theorem B. Proposition 
4.6 then yields that O(M) ?* 1. 

In this section we establish sufficient information concerning the 
subgroup structure of G to allow us to construct covering £-local sub­
groups of G for the primes p dividing | O(M) \. 

We set N=NQ(Z) and C=Co(Z) and fix this notation. We first 
prove 

LEMMA 5.1. The following conditions hold: 
(i) N/CQÉSZ. 

(ii) r = (u, W) is a Sylow 2-subgroup of C and C has a normal 2-
complement. 

PROOF. First, (i) is a restatement of Lemma 4.4. Since Z < 5, SQN. 
Since C<\Nf SC\C = Cs(Z) = Csiz*) is thus a Sylow 2-subgroup of C. 
Since Csfa) == 2\ we conclude that T is a Sylow 2-subgroup of C. 

We argue now that C has a normal subgroup K of index 2 with 
Sylow 2-subgroup W. Since W=(a, b)^Z2

nXZ2" and Z = Qi(W), a 
theorem of Brauer [57] will yield that K, and hence also C, has a 
normal 2-complement. 

Since Z = tix(W) and C=CQ(Z), obviously no involution of T—W 
can be conjugate in C to an involution of IF. I t follows therefore from 
Thompson's fusion lemma that C possesses a subgroup K of index 2 
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not containing any element of T—W. Thus W is a Sylow 2-subgroup 
of K and the proof is complete. 

LEMMA 5.2. If A is any elementary abelian subgroup of R of order 8 
containing Z, then we have 

(i) C0(A)=AXO(CQ(A)). 

(ii) NG(A)/CG(A)O*GL(3, 2). 

PROOF. By Lemma 4.1(v), every elementary abelian subgroup of 5 
of order 8 is self-centralizing in 5. This implies that A is necessarily 
a Sylow 2-subgroup of CG(A) and so (i) follows from Burnside's 
transfer theorem. 

Since R^Q2
n+1 * Q2n+\AQR1QR1 where Ri^Qs * <2s. Furthermore, 

by the structure of M given in Proposition 4.6, it follows that 
NG(RI)/CG(RI) contains an elementary subgroup of order 9. Since 
Ri contains exactly 6 elementary abelian groups of order 8, we con­
clude that | NM(A)/CM(A)\ is divisible by 3. Furthermore, as A^Z, 
Lemma 4.1(v) also yields that N8(A)/A^D8. Thus NM(A)/CM(A)^Si. 

To prove (ii), it will thus clearly suffice to show that NG(A)^M. 
S e t J 7 = iV/0(iV)_LBy the preceding lemma, T<N, T=Qf(Z)f and 
N/T—Sz. Then N contains an element x of order 3 and x does not cen­
tralize Z. Since Z=tii(W) with W^Z^XZ^ and with the elements of 
T—W inverting W, we must have [W, x] — W and also Cf(x) of order 
2. Clearly x normalizes ZCT(X)=E%. On the other hand, if B is any 
elementary subgroup of T of order 8 normalized by %, we have 
~B — ZCB(X) = ZCf(x), so x normalizes a unique elementary abelian sub­
group of T of order 8. But T(x) contains exactly | T\ /2 Sylow 3-
subgroups as | Cf(x)| = 2 . However, by Lemma 4.1(x), T also con­
tains exactly | T\ /2 elementary subgroups of order 8. Thus each is 
normalized by an element of order 3. But i ç r a s i 2 2 . We see then 
that NG(A) contains a 3-element which normalizes, but does not 
centralize Z. Hence NQ{A)($ZM and (ii) is proved. 

We next prove 

PROPOSITION 5.3. If H is a proper subgroup of G containing 5, and 
we setTI — H/0(H), then one of the following holds: 

(i) H=0(H)(HC\M). 
(ii) H=£(H)(Hr\N) and H/0(H)TÇ±SZ. 
(iii) 02(H) contains a normal subgroup of odd index isomorphic to 

PSL(3, q), g s l (mod 4) or PSU(3, q), g s - 1 (mod 4), and with 
Sylow 2-subgroup Vi or F2 . 

(iv) H is fusion-simple. More precisely, either H contains a simple 
normal subgroup of odd index or TÏ~GL(3f 2) • E®\ 
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PROOF. If z is an isolated involution of iJ, then H=0(H)CH(Z) 

= 0(H)(HC\M) by Glauberman's Z*-theorem and (i) holds. Hence 
we may assume that Z*(H) = 1. 

Suppose next tha t 0 2 ( 5 ) = 3 ? , in which case 27 is fusion-simple. 
Since 3? has Sylow 2-subgroups of type G^g), q odd, and since 
\H\ < | G | , Theorem B holds for H by our minimal choice of G. 
If "E^LMn or GL(3, 2)-Ef\ then (iv) holds. In the contrary case, 2? 
has only one conjugacy class of involutions. Let L be a minimal nor­
mal subgroup of H. Since 0(H) = 1, L is of even order and as H has 
only one conjugacy class of involutions, all involutions of H thus lie 
in Z. But 5==12i(5) by Lemma 4.1(H) and so SQLy whence L is of odd 
index in H. Furthermore, the minimality of L implies that L is the 
direct product of isomorphic simple groups. Since 5 cannot be 
expressed as a direct product, we conclude that L is simple and so 
(iv) holds in this case. 

Thus it remains to treat the case that K~02(H)(ZB- By Lemma 
4.4, NnH/CnH^N/C. As noted in the preceding proof, NN(W) 
contains a 3-element x such that [W, x] = W. In view of the stated 
isomorphism, we can take x in H and consequently TFCJK*. If 
W = ~Kr\S, then Brauer's theorem [57] implies that W<"K, in which 
case Z is normal in both E* and U. We conclude at once, using Lemma 
5.1, that (ii) holds. Therefore we may assume that KCSSZ^) W, whence 
KC\S—T, Vu or V2 by Lemma 4.1(xi). The latter two groups are 
isomorphic to Z2

nf Z2 by Lemma 4.1(xi). Since ST is fusion-simple 
and 0(K) = 1, the main result of [56] implies in these cases that (iii) 
holds. 

Suppose finally that Z P \ S = 7 = (W, ü). We shall argue in this case 
that K has a normal subgroup of index 2, which will contradict the 
fact that 02(K) = K and will thus complete the proof. I t will clearly 
suffice to show that the inverse image K of i? in H has a normal sub­
group of index 2. We have that T is a Sylow 2-subgroup of K. Sup­
pose that an involution v of T— W is conjugate in K to an element of 
W and hence of Z = Z(T). Then CK(V) contains a Sylow 2-subgroup 
Ti of K, which without loss we may assume contains CT(V). By 
Lemma 4.1(ix), v inverts W and so CT(v) = (Z, v) is elementary of 
order 8. Since Tx has 2-rank 3, we must have Z(Ti)Q(Zf v). Since 
v&ZiTt), it follows that Z(T1) = {v, x) for some x in Z. Since W^ 
Z2»X22», there exists an element y in Wsuch that y2 = x. Observe that 

Since xy = x, we see that y normalizes, but does not centralize (vy x) 
^Z{TX). This is a contradiction, since obviously | Ar

jK:(Z(ri))/C,is:(Z(r1)) | 
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is odd as 7\ is a Sylow 2-subgroup of K. Thus v is not conjugate to an 
element of W. Since W is a maximal subgroup of T, Thompson's 
fusion lemma now yields that K has a normal subgroup of index 2 
(with Sylow 2-subgroup W). 

REMARK. The final argument of the proposition actually yields the 
following general result, which we shall need in the Appendix. Let T* 
be a 2-group of the form W*(u*), where W* is the direct product of 
two cyclic groups, each of order at least 4, and u* is an involution 
which inverts W*. Then if X is any group with Sylow 2-subgroup T*9 

our argument shows that X possesses a normal subgroup of index 2, 
writh Sylow 2-subgroup W*. 

As a consequence of the proposition, we have 

LEMMA 5.4. Let H be a proper subgroup of G containing S and set 
H ^H/0(H). If D is a maximal S-invariant subgroup of odd order, 
then D ̂ 2.0(H) and D = 0(CH(Z)). In particular, D is uniquely deter­
mined and Z centralizes D/0(H). 

PROOF. We apply the preceding proposition and check each of the 
possibilities for H. Clearly any maximal 5-invariant subgroup of H 
of odd order contains 0(H) ; so it will suffice to prove tha t 
D = 0(CH(Z)). _ 

IfjE=-0(H)(HC\M), then H = HC\M is isomorphic to a subgroup 
of M = M/0(M). However, we have shown in Lemma 4.7(iii) that 
0(CM(Z)) is the unique maximal T-invariant subgroup of odd order 
in M. Since 0(CM(Z)) is, in fact, S-invariant, we conclude at once 
that D = 0(Cx(Z)). If H = 0(H)(HC\N) with H/0(H)^S*, it follows 
from Lemma 5.1 that D = l and that 0 (C^(Z) )=1 , so the lemma 
holds trivially. 

Suppose next that 02(H) contains a normal subgroup K of odd 
index isomorphic to PSL(3, q), g = l (mod 4) or PSUÇ3, q), 
£==—1 (mod 4), with wreathed Sylow 2-subgroup V\ or V2, say, Vi 
for definiteness. We have that Aut(Fi) is a 2-group. Furthermore, 
ZF/ÏÎ has a normal 2-complement as a Sylow 2-subgroup of H/T£ is 
of order 2. Hence H = TO(CH(V1))S = ~KO(CH(Z))S by the Frattini 
argument. Hence, to establish the lemma in this case, it will suffice to 
show that 0(CK(Z)) is the unique maximal 5-invariant subgroup of ÏT 
of odd order. However, by the structure of PSL(3, q), g = l (mod 4), 
and PSU(3, q)t q^ —1 (mod 4), one checks that 0(CK(Z)) is, in fact, 
the unique maximal Fi-invariant subgroup of ~R of odd order. Since 
0(CK(Z)) is 5-invariant, the lemma therefore holds in this case. 

Suppose finally that part (iv) of the proposition holds. If 71=Mn 

or GL(3, 2)-E®\ it follows at once from the structure of these groups 
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that "D — 0(CH(Z)) = 1 and the lemma holds. In the contrary case, T3 
contains a simple normal subgroup ÎT of odd index not isomorphic to 
Mi2. Our minimal choice of G implies that ÏT, and hence also H, has 
only one conjugacy class of involutions and, moreover, that 
M0 = CH(Z), M\ — CH(ZI), and M% = Cgfe) have the structure asserted 
in Theorem B, so that 0(3i) = 1 and W&M'0(M)/0(M) for all 
i, 0^i^2. _ _ 

Now TQ M i for all i and so TQSi for some Sylow 2-subgroup Si of 
Mi, i = 1, 2, and Z, T play the same role in Si and 52 as they do in S. 
Hence Lemma 4.7(iii) applies as well to Mi and M2 as it does to M0 

and yields that Di = 0(CMi(Z)) is the unique maximal T-invariant 
subgroup of odd order in Mi, 0^i^2. Putting z0 = z, we have that 
D = (Cö(zi)\ 0 ^ i ^ 2 ) . Since CD(ZÏ) is a T-invariant subgroup of Mi 
of odd order, C^iz^QDi for each i and we conclude that 
DQ(Di\ 0^i^2). However, by Lemma 5.1, applied to H, we have 
that CH(Z) has a normal 2-complement, whence Di = 0(CMi(Z)) 
QO(CH(Z)), O^i^-2, whence DQO(CH(Z)). The maximality of £> 
now forces equality and the lemma holds in this case as well. 

As a corollary of the lemma, we obtain a key transitivity theorem. 

PROPOSITION 5.5. Any two maximal S-invariant p-subgroups of G 
with a nontrivial intersection, p odd, are conjugate by an element of 
CQ(S). 

PROOF. Suppose false and choose Pi, Qx maximal S-invariant 
^-subgroups of G with PIC\QIT^1 to violate the desired conclusion 
and such that E = PiP\Çi has maximal order. Setting H—NG(E), then 
i f is a proper subgroup of G containing S and so by the preceding 
lemma, H possesses a unique maximal 5-invariant subgroup D of 
odd order. Then Npt(E) and NQ^D) are each contained in D* 

We let P be a maximal S-invariant ^-subgroup of G containing 
Npx(E) such that PC\D is a Sylow ^-subgroup D. Since PC\P\ 
^DNp1(E)~Z)E, our maximal choice of Pi , Qi implies that P i = P? for 
some g in CG(S). Furthermore, NQl(E)hQPr^D for some h in CD(S) 

QCG(S). Then Pn(^^NQl(E)hDE and so Q ? ' = P for some g' in 
CG(S), again by our maximal choice of Pi , &. Setting x = hg'g, we 
have XÇZCG(S) and QJ = Pi , contrary to our choice of Pi , Qi. 

Finally we prove 

LEMMA 5.6. Let H be a p-local subgroup of G, p odd, with the follow­
ing properties: 

(a) H contains S and covers M/O (M). 
(b) H is p-constrained and Op>(H)ç:0(H). 
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If P is a maximal S-invariant p-subgroup of H, then H = 
Op,(H)NH(Z(J(P))). 

PROOF. Except in a single case, we shall argue that H is ^-stable 
with respect to P . The desired conclusion will then follow from the 
extended form of Glauberman's ZJ-theorem stated in Theorem 3.2. 
The exceptional case occurs when H/0(H)=M/0(M)yp = 2>, and one 
of the characteristic powers of G is 3 and the other is greater than 3. 
In this case, we shall show that H=H0NH(P) for some subgroup H0 

of index 3 in H such that O(H)PSQH0f H0 is ^-constrained, Op>(Ho) 
= 0P'(H), and such that H0 is ^-stable with respect to P. Glauber-
man's theorem will then yield HO = OP>(H0)NHQ(Z(J(P))). Since 
H=H0NH(P), <V(ff0) = <V(fO, and NH(P) normalizes Z(J(P)), the 
desired conclusion H = Op>(H)NH(Z(J(P))) will follow in this case as 
well.5 

We first verify that P satisfies conditions (a) and (b) in the defini­
tion of ^-stability with respect to P . Since Op>(H)C10(H), so also 
Op>,p(H)Ç10(H) and consequently Op>tP(H) = Op>tP(0(H)). But by 
the maximality of P , PC\0(H) is a Sylow ^-subgroup of 0(H) and 
hence PC\Op>tP(0(H)) is a Sylow ^-subgroup of Op>tP(0(H)). Thus, in 
fact, Pr\Op>tP(H) is a Sylow ^-subgroup of 0P'tP(H), and so condition 
(a) holds. 

We claim that Tt = H/0{H) satisfies (i) or (iv) of Proposition 5.3. 
Indeed, by assumption (a) of the lemma, CU(Z)=M/0(M) and so by 
Proposition 4.6 contains a normal subgroup isomorphic to SL(2, qx) 
*5L(2, g2). But then Lemma 5.1 shows that H is not isomorphic to 
N/0(N). Likewise using the structure of the centralizer of an involu­
tion in PSL(3, q), q^l (mod 4) or P S £7(3, g), g== - 1 (mod 4), we 
see that H cannot have the structure of Proposition 5.3(iii). Thus our 
assertion is proved. 

Consider first the case that H contains a simple normal subgroup L 
of odd index. Since Aut(S) is a 2-group, we have H — LCH(S) 
~ LO(CQ(S)) by the Frattini argument. Now let K be an arbitrary 
normal subgroup of H and set H = H/K. We argue that P"DOp(H). 
Suppose KQO(H). Since 0(H) = 1, it follows that 0(H) covers 
Op(H). Hence if E denotes the inverse image of 0P(H) in Hy we have 
that E<H and EQO(H). Since PC\0(H) is a Sylow ^-subgroup of 

6 This exceptional case can be avoided if one first notes that the extended Glauber-
man Z/-theorem [55, Theorem 2.7.2] and Theorem 2.2 above, actually holds with 
condition (b) in the definition of ^-stability with respect to P replaced by the weaker 
condition: 

(b') NH(P)K/K contains Op(H/K)for every normal subgroup K of H. 
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0(H), PC\E is a Sylow ^-subgroup of E and so P~DOp(Ë) in this case. 
Suppose then that K(£0(H). Since L is the unique minimal normal 
subgroup of ZT, K must cover L. Since H = LO(CH(S)), we see in this 
case that F = 0(H)0(CH(S)) covers 0P(H). However, by Lemmas 5.1 
and 5.4, Cp(Z) is a Sylow ^-subgroup of 0(CH(Z)). Since CH(Z) has a 
normal 2-complement, 0(CH(Z))r\CH(S) — 0(CH(S)) and conse­
quently Cp(S) is a Sylow ^-subgroup of 0(CH(S)). Since PC\0(H) 
is a Sylow ^-subgroup of 0(H), it follows therefore that PC\F is a 
Sylow ^-subgroup of F. Thus P contains 0P(B) in this case as well. 
We conclude that condition (b) in the definition of ^-stability with 
respect to P holds when ZF contains a simple normal subgroup of odd 
index. 

On the other hand, if H^GL(3, 2)-£(
8

2), it is immediate that 
PQO(H) and that 0(H) covers 0(H) in both cases KQO(H) and 
K%0(H). Since P is a Sylow ^-subgroup of 0(H), the desired con­
clusion P~DOp(H) follows at once. 

Thus we may assume that Proposition 5.3(i) holds. In view of as­
sumption (a), we have that ~H=M/0(M), so we can identify U with 
M. Again let K be normal in H and set H = H/K. If KQO(H) or 
0(H) (z), it follows exactly as in the corresponding part of the 
first case that P^Op(H). Since # = M = ZiZ20 (<?#(£)) S by Lemma 
4.7(i), it follows likewise as in the corresponding part of the first 
case, if K covers L\L<L, that P^±Op(H). Hence we may assume that 
K^O(H)(z) and that K does not cover LiZ2. But any normal sub­
group of H which contains (z) properly necessarily contains either L[ 
or L'2. Note that !» = !$ if g»>3, i = l or 2. 

If qi>3 for both i= 1 and 2, it follows from the structure of TÎ that 
0(H)0(CH(S)) covers 0p(H) and condition (b) follows once again as 
in the corresponding part of the first case. Likewise if p9^Z, 
0(H)0(CH(S)) covers 0p(H) and again condition (b) holds. Hence we 
may assume that p = 3 and that, say, gi = 3. If also g2 = 3, then clearly 
PQO(H) and so P is a Sylow ^-subgroup of 0(H). But then P is nor­
mal in a Sylow ^-subgroup of H and so the first alternative of condi­
tion (b) in the definition of ^-stability with respect to P holds; so 
we can also suppose that g2> 3. Hence if K covers Zi, it again follows 
that 0(H)0(CH(S)) covers 0p(H), whence condition (b) holds as 
before. Likewise we reach the same conclusion if K covers L2, but 
does not cover L[. 

Thus it remains to consider the case that p = Sf #i = 3, g 2 >3, and 
K covers Z{, but not Zi. In this case we set TJ0==ZIL2O(CH(S))ÏS. 
Then | ZT: H0\ = 3 and if H0 denotes the inverse image of # 0 in H, we 
see that |£T:iïo| = 3 , O(H)PSQH0l H0 is ^-constrained, and 0P>(HQ) 
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— Op>(H). Moreover, if K0 is any normal subgroup of H0, it follows 
as above that PK0/K0 contains Op(H0/Ko), so H0 satisfies condition 
(b) and likewise it satisfies condition (a) in the definition of p-
stability with respect to P. Finally we note that both Z2 and 0(CH(S)) 
centralize I i . Since clearly PCZ20(C#(S)), we have that H=H0NH(T). 
Hence by the Frattini argument, H = HONH(P) and so H0 satisfies the 
various side conditions stated for H0 in the exceptional case. 

Hence to complete the proof of the lemma, we have now to show 
that if P0 is any non trivial subgroup of P such that Op>(H)P0<iH 
and if A is any ^-subgroup of P such that [P0, A, A] — l, then 

(2) ACH(PO)/CH(PO) Q OP(NH(PO)/CH(PO)) 

with a corresponding statement with H0 in place of H in the excep­
tional case. However, if we verify this assertion for H itself, it is 
clear that it will also hold for H0 and so it is enough to treat the case 
of H itself. 

We next reduce to the case that H has the form given in Proposi­
tion 5.3(i). Suppose then that H satisfies Proposition 5.3(iv). Lemma 
5.4 implies that TQO(CH(Z))QHI= Cs(z). Setting Hx equal to the 
inverse image of Hi in H, we have that AQPSQHi. Furthermore, 
our minimal choice of G implies that 0(Hi) = 1 and consequently 
0(Hi)=0(H) and Op>(Hi)=>Op>(H). Clearly the ^-constraint of H 
also implies the ^-constraint of Hi. Since we also have that Hi/0(Hi) 
= CH(Z)=M/0(M), we see that Hi satisfies all the conditions which 
H would satisfy when H has the form given in Proposition 5.3(i). 

We argue now that if (2) holds for Hi, then it holds for H. Sup­
pose then that (2) is false for H. By a standard argument, a suitable 
homomorphic image H of H with 0P(H) = 1 is faithfully represented 
on a vector space W over GF(p) in such a way that A^\ 
and [W, Ây i l ] = l . Since H = H/0(H) is either isomorphic to 
GL(3, 2) -Eg2) or has a normal simple subgroup of odd index, it follows 
that the kernel of this representation is contained in 0(H). Since 
0(H)=0(Hi) and 0 ( ^ ( 2 ) ) = 1, this implies that Op(Ëi) = l. How­
ever, since we are assuming that (2) holds for Hi, we have that 
ÂQOp(Hi), so A — 1, which is a contradiction. Thus it will suffice to 
treat the case that H = H/0(H)9ÉM/0(M). 

As in the proof of [30, Lemma 11.10], the question of the validity 
of (2) can be reduced, again by a standard argument, to the following 
situation: A vector space U over GF(p) acted on faithfully and ir-
reducibly by a group / containing A with O(J) a £'-group in the 
center of J and with J/0(J) isomorphic to a homomorphic image of 
the normal closure of A in H = H/0(H). To establish the desired 
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conclusion, we must show under these conditions that [Z7, A, A ] ^ 1 . 
We assume the contrary, in which case 7 involves SL(2, p). We 

claim that 7 /0 (7 ) is actually isomorphic to a subgroup of ZT. Indeed, 
as 'H=M/0(M)} either this is the case or 7 /0 (7 ) is isomorphic to a 
homomorphic image of ~B/(z). However, in the latter case, it would 
follow from the structure of M/0(M) that 7 had a normal subgroup 
of odd index with Sylow 2-subgroups that were dihedral or the direct 
product of two dihedral groups. But then we see that 7 cannot involve 
SL(2, p). This proves our assertion. Thus we can identify 7 = 7 /0 (7 ) 
with the normal closure of A in H. For simplicity, we also identify 27 
with M. 

Since 7 is the normal closure of Z in Tl and since JT/ZiZ2 = M/X{L2 

isabelian, we see that 7 = LA, where L = Lu L2l or LiL2. We argue first 
t h a t - 4 C L . Indeed, suppose not. Then as 0(7) is a £'-group, A does 
not centralize L and so does not centralize one of the components of 
L, which, for definitençss, we can take to be L\. Now P is a maximal 
^-invariant ^-subgroup of H and so PC\L\ is a maximal Qi-invariant 
^-subgroup of Zi. Thus P = (PnZi)Cp(Öi). If P P i Z ^ l ^ i t follows 
from standard properties of the group rL(2 , qi) that Cz^PCSLi) is a 
P-invariant cyclic group and that any element of P — Cf{L\) (PC\L\) 
normalizes, but does not centralize a Sylow r-subgroup of Q ^ P H Z i ) 
for some odd prime r?±p. On the other hand, if PP\Li = 1 and Qo is a 
normal subgroup of Qi of order 4, we conclude similarly that every 
element of P—Cp(Li) normalizes, but does not centralize a Sylow 
r-subgroup of CzxiQo) for some odd prime r^p. Since 0(7) is a p'~ 
group and i Ç P does not centralize Li, it follows that some element 
a of A$ normalizes, but does not centralize an r-subgroup of 7 for 
some odd prime r?£p. The Hall-Higman theorem now yields that 
[ U, a, a] 7e 1, contrary to our present assumption [U,A,A]—1. Thus 

AQLy as asserted. 
Since Z is the normal closure of A in 2? and A C P, clearly PP\Z,- 9^ 1 

if L t Ç L , i= 1 or 2. But now as PC\Li is a maximal (^-invariant sub­
group of Li, it follows from the structure of SL(2, gt) that q^p^ 
and also if £ = 3, that ^ 7 ^ 5 . If L{ denotes the inverse image of Li 
in 7, the argument at the end of [55, Proposition 2.6.1] shows that 
no ^-element of Li has a quadratic minimal polynomial on U. Hence 
we reach a contradiction unless L~L\L2. However, in this case, Li 
centralizes PC\Lj for ij^j and Li=*Li{Pr\Lj)/Pr\Lj is faithfully 
represented on UJ—CTJ(PC\LJ). Again the argument of [55] implies 
that this representation is ^-stable. Since A 5^1, we conclude that 
[Ujy A, Â\T*\, contrary to the fact that [Ut A, A] = l. Thus (2) 
holds in all cases and the lemma is finally proved. 
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6. Covering £-local subgroups. By assumption, O(ikf) 5^1. We let 
7T be the set of primes dividing | O(M) | . For each p in x we shall 
now construct a £-local subgroup Kp of G with the following proper­
ties: 

(a) Kp contains both S and an S-invariant Sylow ^-subgroup of 
O(M); 

(b) Kp covers M/0(M); 
(c) Kp/0(Kp) is fusion-simple. 
We call Kp a covering p-local subgroup of G. 
We fix a prime p in 7r, we let P i be a maximal S-invariant ^-sub­

group of M containing a maximal S-invariant ^-subgroup of 
C=CG(Z) and we set P 0 = P i^O(Af) , so that P 0 is a Sylow ^-sub­
group of 0(M) and P O T ^ I . We fix this notation and also recall that 
Z = <*i> s2>, N = NQ(Z), and C=C<?(Z). 

We first prove 

LEMMA 6.1. There exists a maximal S-invariant p-subgroup Q of G 
such that N0(Q) covers N/0(N) and Ö H P i ^ l . 

PROOF. We claim that CPl(zi) = CPl(Z) 7*1. This is clearly the case 
if 0i centralizes P 0 as P O T ^ I , so assume Z\ does not centralize Po. By 
the Frattini argument, NM(PO) covers M/0(M). But now observing 
the structure of M, we see that the image of Z\ in NM(PO)/CM(PO) 
is not in the center of this group. I t follows that Z\ does not invert Po 
and hence that Cpx(z\) 5^1, so our assertion holds in this case as well. 

By Lemma 5.1 (ii), C has a normal 2-complement. I t follows there­
fore from our choice of P i that Q\ = CPl(Z) is an S-invariant Sylow p-
subgroup of 0(C) = 0(N). Since Q I T ^ I , NG(Qi) is thus a £-local sub­
group of G which covers N/0(N). 

Let i f be a £-local subgroup of G such that 
(a) H covers N/0(N) and contains S; 
(b) 0 , ( f l ) 2 Q i ; 
(c) Subject to (a) and (b), |O p ( i ï ) | is maximal; 
(d) Subject to (a), (b), and (c), a maximal S-invariant ^-subgroup 

of H has maximal order. 
Clearly such an H exists. We shall argue that 0P(H) is, in fact, a 

maximal S-invariant ^-subgroup of G. 
Let Q be a maximal S-invariant ^-subgroup of H and set Qo = 

QC\0(H). Then Q0 is a Sylow ^-subgroup of 0(H). By the Frattini 
argument, NH(Qo) covers H/0(H) and so covers N/0(N). Hence 
Ho = N0(Qo) covers N/0(N), contains S, and QoQOp(H0). Since 
Qo20p(i?)3Qi, we conclude from our maximal choice of H that 
Q»~Ov(H). 
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Now set Tl = H/0(H). By Lemma 5.4, Q is a Sylow ^-subgroup of 
0(CE(Z)). However, Qx is a Sylow ^-subgroup of 0(C) and hence of 
0(CH(Z)). Since QiQO(H) and 0(CH(Z)) maps onto 0(Cg(Z)) f it 
follows that Q i = l . Thus Q — Q0~Op(H). But now we see from our 
maximal choice of H that Q must be a maximal 5-invariant ^-sub­
group of NG(Q), which implies that Q is, in fact, a maximal S-
invariant ^-subgroup of G. 

LEMMA 6.2. One of the following holds: 
(i) Pi is a maximal S-invariant p-subgroup of G; or 
(ii) NG(P0) is p-constrained and Op>(NG(P0))Ç10(NG(Po)). 

PROOF. WesetH = NG(P0), so that H covers M/0(M) and H^PxS' 
Let P2 be a maximal 5-invariant ^-subgroup of H" containing Pi and 
P 3 a maximal 5-invariant ^-subgroup of G containing P2 . By a 
standard use of Thompson's AXB-lemma [60, Theorem 5.3.4] (cf. 
[31, Lemma 8.7]), z centralizes Pi if and only if it centralizes P3 . 
Since z £ Z , it follows from Lemma 5.4 that Cpt(z) covers 

P*/P2C\0(H). 

Hence z centralizes P2 if and only if it centralizes P2r\0(H). 
If z centralizes P3 , then P 3 = P i as P 3 2 P i and P i is a maximal 5-

invariant ^-subgroup of M~CG(z). Thus (i) holds in this case. In 
the contrary case, z does not centralize PiC\0(H) by the preceding 
paragraph and so by a standard argument, z does not centralize 
Qo=P2r\0P'tP(0(H)). Since z leaves Q0 invariant, this in turn implies 
that z^OP'(H). Since (z) = Z(S) and 5 is a Sylow 2-subgroup of H> 
it follows tha t | Op>(H) | is odd and hence that Op>(H)Ç10(H). For the 
same reason, CH(QO)QO(II) and hence CH(Qo)QOp>tP(0(H)) 
— Op>tP(H). Thus H is ^-constrained and (ii) holds. 

We recall that P = QiQ2=Q2n+1 * (?2n+1 with Qi = (a&~1, zxt) and 
Q2 — (ab, Zitu) and, moreover, that P is a Sylow 2-subgroup of M''. 
We next prove 

LEMMA 6.3. If R centralizes P 0 , then NG(PO) is a covering p-local 
subgroup of G. 

PROOF. We set A = (u, Z), so that A is an elementary abelian sub­
group of R of order 8. By Lemma 5.2, CG(A) =A XO(CG(A)) and 
NG(A)/CG(A)^GL(3, 2). Moreover, by Lemma 4.7(H), 0(CG{A)) 
QO(M)CG(S). Since AQR centralizes P 0 by hypothesis and P 0 is 
a Sylow ^-subgroup of 0(M)1 it follows that an 5-invariant Sylow 
^-subgroup P of 0(M)CG(S) containing p0 is a Sylow ^-subgroup of 
0(CG(A)). Furthermore, P 0 < l P and 5 centralizes P /Po, so R cen­
tralizes P . 
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By the Frattini argument NG(P) covers H = N G(A) / C G(A) 
^GL(3, 2).^Moreover, Ri*=>NB(A)DA and so i ? i ^ l . Since H J s 
simple and Ri centralizes P , it follows that CG(P) also covers H. 
Since P0QP, also CG(P0) covers 27. We conclude therefore that 
K = NG(Po) covers both N0(A)/CQ(A) and M/0(M). But now X 
must satisfy Proposition 5.3(iv) and so K/0(K) is fusion-simple. 
Thus K is a covering £-local subgroup and the lemma is proved. 

We now prove the existence of covering £-local subgroups in each 
of the two cases of Lemma 6.2. 

LEMMA 6.4. If Pi is a maximal S-invariant p-subgroup of G} then 
NG(P0) is a covering p4ocal subgroup of G. 

PROOF. Let Q be a maximal 5-invariant ^-subgroup of G which 
satisfies the conditions of Lemma 6.1. By Proposition 5.5, Pi is con­
jugate to Q by an element of CG(S). Since z centralizes Pi , z thus cen­
tralizes Q. Since NG(Q) covers N/0(N) and N contains a 3-element 
which cyclically permutes the involutions of Z, it follows that Z cen­
tralizes Q. Thus Z centralizes Pi . In particular, Z centralizes Po. 
But NM(PO) covers M/0(M) and it is immediate from the structure 
of M tha t the normal closure of Z in NM(Po) contains P . Thus R 
centralizes P 0 and now the desired conclusion follows from the pre­
ceding lemma. 

LEMMA 6.5. If NG(P0) is p-constrained and Op>(NG(P0))QO(NG(P0)), 
then NG(Z(J(P))) is a covering p-local subgroup of G for some maximal 
S-invariant p-subgroup P of G. 

PROOF. We set H^N^Po), so that II covers M/0{M), H is ^-con­
strained, roPi, and Op>(H)QO(H). We also let P * be an SPi-in-
variant Sylow ^-subgroup of Op>,p(0(H))=0P'tP(H). Our conditions 
imply that z does not centralize P* . Moreover, by the Frattini argu­
ment, NG(P*) is a £-local subgroup of G which covers H/0(H) and 
hence covers M/0{M). In addition, NG(P*) contains SPi. 

We now let i£ be a ^-local subgroup of G such that 
(a) K covers M/0(M) and contains 5 ; 
(b) Op(K)^P* and K-DPi) 
(c) Subject to (a) and (b), |Op(i£) | is maximal; 
(d) Subject to (a), (b), (c), a maximal 5-invariant ^-subgroup of 

K has maximal order. 
Since NG(P*) satisfies conditions (a) and (b), such a p-locsX sub­

group K exists. Moreover, as in Lemma 6.1, it follows by the Frattini 
argument that 0P(K) is a Sylow ^-subgroup of 0(K). Since P*QOp(K) 
and z does not centralize P*, z does not centralize 0P(K). Since 
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(z) = Z(S), we conclude at once from this that CK(OP(K))QO(K) and 
that Op>(K) QO(K). Together these conditions imply that K is ^-con­
strained. We see then that K satisfies all the hypotheses of Lemma 
5.6. Hence if P is a maximal ^-invariant ^-subgroup of K containing 
Pi, we conclude that 

K = OAK)NK(Z(J(P))). 

We set J — NQ(Z(J(P))) and now investigate 7. Since K covers 
M/0(M) and 0p>(K)Ç10(K)y it is immediate that KC\J and hence 
also / covers M/0(M). Since P is S-invariant, also PSQJ. But 
Op(K)<\P and P^QO^K), so, in particular, P*QOp(K)QJ. 

We claim next that Qo = Op(K)QO(J). Indeed, set J = J/0(J). 
Since / c o v e r s M/0(M), J satisfies the conditions of either Proposi­
tion 5.3(i) or (iv). Setting KQ = KC\J, it follows in the first case that 
K0 = 7 asJKo covers M/0(M). But Q0 = 0P(K) < K0 and so Q0 < K0 = 7. 
Since 0(7) = 1, this forces Qo = 1 and so QoQO(J) in this case. In the 
second case, / is fusion-simple and J satisfies the conclusion of 
Theorem B by the minimality of G, so 0(Cj(z)) = 1 and Cj(z) 
^M/0{M). Since i ^ c o v e r s M/0(M), it follows that KQ=Cj(z) and 
that O(K0) = 1. But Qo<Ko as Q0<K0y soQ0=l and QoQO(J) in this 
case as well. 

Finally, let P be a maximal 5-invariant ^-subgroup of J containing 
P and consider L = NG(P^0(J)). By the Frattini argument, L 
covers J/0(J) and so covers M/0(M). Furthermore, L contains PS 
and Op(L)^Pr\0(J). But Pr\0(J)^Pr\0(J)^Op(K) by the pre­
ceding paragraph and so 0p(L)~D0p(K)^DP*. Since J ? 2 P 3 P I , we see 
then that L is a £-local subgroup of G which satisfies conditions (a) 
and (b) above and which is at least as large as K in our ordering. But 
now our maximal choice of K forces 0P(L) —0P(K) and P = P. Since 
Z(J(P)) is characteristic in P , we conclude at once from the definition 
of J and P that P is, in fact, a maximal 5-invariant ^-subgroup of G. 

Now we can easily show that J = NQ(Z(J(P))) is a covering 
^-local subgroup of G. Let Q be a maximal 5-invariant ^-subgroup of 
G satisfying the conditions of Lemma 6.1, so that Ç H P i ^ l and 
N6(Q) covers N/0(N). Since P D P i , Q H P ^ l and so by Proposition 
5.5, Q is conjugate to P by an element of CQ(S). But then NQ(P) also 
covers N/0(N) and consequently so does 7. Since 7 covers M/0(M) 
and contains S, we conclude therefore from Proposition 5.3 that 
J/0(J) is fusion-simple. Since J'Q.PQ, J is thus a covering p-local 
subgroup of G, as asserted. 

Combining Lemmas 6.2, 6.4, and 6.5, we obtain the objective of this 
section. 
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PROPOSITION 6.6. G possesses a covering p-local subgroup for each 
prime p in T. 

7. Proof of Theorem B. Since G is a minimal counterexample to 
Theorem B, we have that 0(M)?*l. We shall now contradict this 
conclusion by showing that, in fact, 0(M) = 1. We know from 
Lemmas 4.1(iii) and 4.8 that G is a connected group of 2-rank 3 in 
which the centralizer of every involution is 2-generated. Since G is 
fusion-simple we also have that 0(G) = 1. Hence if we can demon­
strate that G is balanced, Theorem 2.1 will be applicable and will 
yield that 0(CG(Z)) —0(M) = 1, giving the desired contradiction. 

Thus Theorem B will be proved, once we establish the following 
result : 

PROPOSITION 7.1. G is balanced. 

PROOF. We must show that 0(C0(x))r^CG(y)QO(C0(y)) for every 
pair of commuting involutions x, y of G. Since G has only one con-
jugacy class of involutions, we may assume that x = z and that y(ES. 
We set D = Co(M)(y) and we must prove that DQO(Co(y))» I t will 
clearly suffice to show that for each prime p dividing | D | , a Sylow 
^-subgroup of D is contained in 0(Co(y)). 

By Proposition 5.6, G possesses a covering £-local subgroup K = KP. 
In particular, K contains S as well as an S-invariant Sylow ^-sub­
group P 0 of 0(M). Clearly D0~ CpQ(y) is then a Sylow ^-subgroup of 
Z>, so we need only show that D0QO(Co(y)). 

Setting ~K = K/0(K), we have that ÏT is fusion-simple. Since 
CK(Z) covers M/0(M) and since the centralizer of an involution in 
M12 or GL(3, 2) - E f does not involve SL(2, gi) * 5L(2, g2), K is not 
isomorphic to one of these groups. Hence by our minimal choice of 
G, K has one class of involutions and O(Cü:00) = l. B u t clearly 
PoQO(M)r\K = 0(CQ(z))r\KQO(CK(z)). Since 0(CK(z)) maps onto 
0(CE(Z)) = 1, we conclude that P<*QO(K). __ 

On the other hand, Cît(y)=CK(z)=M/0(M) as K has only one 
class of involutions. Hence if wre set H=Co(y)} we see that CK(y) 
covers H/0(H) and hence that H = 0(H)(KC^H). This implies that 
0(KnH)QO(H). But clearly 0(K)C\HQO(Kr\H) and so 
0(K)C\HQO(H). However, as P0QO(K), D^CP,(y) =P0nHQ 
0(K)C\H> whence D0QO(H) =:0(Co(y))i as required. This completes 
the proof of Theorem B. 

APPENDIX 

8. Fusion of involutions. In this section, we establish the three un-
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published results of Fong, stated without proof in §4; namely, 
Theorem 4.3 and Lemmas 4.4 and 4.5. 

We let S be a 2-group of type G2(q), q odd. We preserve the previous 
notation. We shall now list some easily verified additional properties 
of 5. However, to do so, we require a preliminary definition. Let 
D = DiXD2 be the direct product of two dihedral 2-groups D\, D2 

and let F be a 2-group of the form Y=D(y), where \y\ = 2 , £>»< F, 
and Fi — Di(y) is dihedral, i = 1, 2. Under these conditions we say that 
F is the crown product of Fi and F2 and write Y=Fi/\F2. We note 
that in the special case that | F<\ = 8 , i=l, 2, Y^(Z2XZ2)fZ2. 

LEMMA 8.1. The following conditions hold: 
(i) S has seven conjugacy classes of involutions, represented by z, Z\, 

T=(W,u); 

{tu) X (u, ab'1) ^ Z2 X ZV41; 

(u)x (U> = ^ X f t ; 
(uab)X(t,Z)^Z2X ZV, 

(ua, Z) Ç* E%. 

(iii) IfS = S/(z),thenR=Q1XQ2^D2-XD2-and (Qu üb)^(Q2l üh) 
ÇÉD2*+K 

(iv) r is the unique maximal subgroup of S with a noncyclic center. 
(v) All involutions of (t, W) — W and (tu, W) — W are conjugate to t 

and tu respectively. 
(vi) (u, a2, b2) is the normal closure of u in S and S/(u, a2, b2)=D&. 
(vii) S/(z)^D2^/\D2^K 

Now let G be a finite group with Sylow 2-subgroup S. Our first 
result will establish Lemma 4.4. 

LEMMA 8.2. If G has no isolated involution, then NQ(Z)/CQ(Z)=SZ. 

PROOF. We first show that z~z\. Suppose false, in which case 
Glauberman's Z*-theorem [47] together with Lemma 8.1 (i) implies 
that z is conjugate to y, where y = t, tu, u, uab, or ua. If y^ua, then 
Lemma 8.1(H) implies that z£Qi(Cs(y)'). Hence if we choose gGG 
such that 

/, tu, u, uab, ua: 

Cs(zi) = 

Cs(t) = 

Cs(tu) = 

Cs(u) = 

Cs(uab) = 

Cs(ua) = 

(ii) 

y° = z and C8(y)° C 5, 
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then z° — z\ or z2, by Lemma 4.1 (ii). In either case z~Zi, contrary to 
our present assumption. Hence y^ua. 

Choose h in G such that 

(ua)h = z and Cs(ua)h = {ua, Z)h £ 5. 

Since uaz\~ua in S, (uazi)h is not conjugate in 5 to /, tu, u, or wa& or 
else z is conjugate to one of these elements, contrary to what we have 
just shown. Clearly (uazi)h^z and so there exists 5 in S such that 
(uazi)h8 — ua. But then 

z\ * = (ua - uazi)h* = z • ua ~ ua ~ z, 

which is again a contradiction. Thus z~z\, as asserted. 
Now choose k£zG such that 

2Î = 3 and Cs(zi)k = T* C 5. 

But T" is the unique maximal subgroup of S with a noncyclic center 
by Lemma 8.1(iv) and so Tk = T. Hence Zk = Z as Z = Z(T). From 
this, our lemma follows at once. 

Henceforth we assume that G is fusion-simple and we again set 
M=CG(z). We next prove 

LEMMA 8.3. G has exactly one or two conjugacy classes of involutions. 
In the latter case, z, t, are not conjugate and t, tu are conjugate. 

PROOF. By Lemma 8.1 (v), all involutions of (tt W) — W are con­
jugate to t in S. Since Z = Qi(W), it follows from the preceding lemma 
that all involutions of W are conjugate to z in G. Since (t, W) is 
maximal in 5 and G has no normal subgroups of index 2, Thompson's 
fusion lemma [45, Lemma 5.38] implies that every involution of 5 is 
conjugate in G to / or z. Similarly considering {tu, W), every involution 
of 5 is conjugate to tu or s. Together these two assertions imply the 
lemma. 

In view of Lemma 8.1(vii), we shall also need a general property of 
groups with a Sylow 2-subgroup F£=Z)2

n+1A£>2n+1. Since the same 
result is also needed in another paper [34], we shall make the proof 
independent of the present context. We know that Y is of the form 
D{y), where 

D = {ah hi) X <<*i, b2) S D2n X Z)2» 

with af"1-^2 =3,2 = 1 and ($ = <hl, # = <*<&<, * = 1 , 2. Since Y 
^ ( Z 2 X 2 2 ) / Z 2 if n = 2, the result we require has already been estab-
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lished in this case [30, Lemma 4.4]. Thus we shall limit ourselves 
here to the case n*z3. We let et- be the central involution of (a^ &»), 
i = 1, 2, and set E~ (eu e2), so that E = Z(Y). We fix this notation for 
the next two lemmas. 

To establish our desired assertion, we first derive a general prop­
erty of groups with Sylow 2-subgroup D; that is, the direct product 
of two nonabelian dihedral groups. Although the specific result we 
need was not proved in [33], some of the arguments of [33] will 
easily yield it. 

LEMMA 8.4. If X is a group with Sylow 2-subgroup D in which 
£ C Z ( J ) , then X has a normal 2-complernent. 

PROOF. Setting K = 02(X), we shall argue first that KC\D contains 
only central involutions of D. Representatives of the conjugacy 
classes of noncentral involutions of D are bi, ai&i, b2, a2b2} b±b2, a\b\b2y 

&1&2&2, and a\b\a2b2. 
Suppose first that hCzK. By Thompson's fusion lemma, bi must 

then be conjugate to an involution u of (<Xi)X (a2l b2). Since EQZ(X), 
uÇ£E. Hence CD(u) = (ah &i)X(e2, w)^D2nXZ2XZ2 . We see then that 
I Cnibi) I = I Ci>(w) J and that 61, u are each extremal in D. Then X con­
tains an element x such that 

bi = u and CD(&I) = (bi, e\) X (a2, b2) = CD(U). 

But then (CD(bi)')x = CD(u)' and so e\^e\, which is impossible as 
E C Z ( X ) . The above argument clearly works for any involution d of 
D such that Cjo(d)(~Diny,Z2y,Z2 if we choose a suitable maximal 
subgroup of D. We conclude therefore that 61, ai&i, &2, a2b2 are not in K. 

Suppose next that bib2ÇzK. Again by Thompson's transfer lemma, 
b\b2 is conjugate to an involution u of (ai)X(a2, b2). Hence CD(U) 
= {#1, bi)X{e2, u) and again u is extremal in D. On the other hand, 
B = CD(b\b2) = (ei, &i, e2, b2) is elementary of order 16 and b\b2 is not 
extremal in D. In this case there exists x in X such that 

(6162)* = u and B* C CD(u). 

By [33, Lemma 3.1], two elementary abelian subgroups of D of 
order 16 are conjugate in X if and only if they are conjugate in D. 
(We note that the proof of the lemma does not require X to have no 
normal subgroups of index 2.) Since BxQCD(u)t it follows that for 
some element d in £>, Bzd = B. Thus &1&2 and ud are conjugate in 
N = Nz(B). 
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By the structure of D, N has Sylow 2-subgroups of the form 
DsXDs. Since AutiDgXDs) is a 2-group, it follows at once, using the 
Frattini argument, that a Sylow 2-subgroup of iV= N/Cx(B) is a 
four group and is in the center of its normalizer in "N. Thus "N has 
a normal 2-complement Q. Suppose QT^I. Since J E C Z ( X ) , the only 
possibility is that \Q\ = 3, [Q, E] = 1, and [Q, 5 ] is a four group dis­
joint from E. But [J>, 5 ] < i V as Q<N and so [Ç, B j H E ^ l , a 
contradiction. Thus 0 = 1 and N has a normal 2-complement. We 
conclude that N=NX(B)=ND(B)CX(B). 

It follows now that ud is conjugate to bib2 in ND(B) and so wd = &1&2, 
bxeib2, b\b2e2y or b±eib2e2. However, wd£(ai , #2, b2)

d = {ai, #2, ^2), which 
clearly contains none of the preceding four elements. This contra­
diction shows that bib2^K. By a similar argument we obtain that 
#i&i&2, o\a2b2l and aj)ia2b2 are not in i£. 

We have therefore finally proved that DQ — KC\D does not contain 
any noncentral involution of D. We check now from the structure of D 
that there are two possible structures for D0; namely, D0Q(ai, a2) 
or D0~(Uj v) with (u, v2)~(u)X{v2)Q(ai, a2) and v(£{a,u 02). (For 
example, D0 = (ai, a2bi) is of the second type.) 

In the first case, as E = fii((ai, a2))QZ(X), Burnside's transfer 
theorem implies that K has a normal 2-complement. Since K = 02(K), 
this forces Z>0 = 1. Thus X has a normal 2-complement in this case. 

Now assume that DQ={U, V) is of the second form. In this case, we 
apply the extended form of Thompson's fusion lemma described in 
[30, §4]. Let e, f be the involutions of (u)f (v) respectively, so that 
e,fÇzE and e^f. If v were conjugate in K to an element of (u)X {v2), 
it would follow that \u\ =\v\ and that ƒ was conjugate to e in K, con­
trary to the fact that EQZ(X). Since every element of D0—(u, v2) 
has order at least | v\, we also see that v2% for i = 1 is not conjugate to 
an element of Do — (uf v2). But now we conclude from the above-
mentioned lemma that K has a normal subgroup of index 2, contrary 
to the fact that K = 02(K). This completes the proof. 

Now we prove 

LEMMA 8.5. If X is a group with Sylow 2-subgroup F, then X has a 
normal subgroup of index 2 with Sylow 2-subgroup D. 

PROOF. We check directly that D is the unique maximal subgroup 
of F which contains no elements of order 2W. Hence it will suffice to 
prove that X possesses a normal subgroup of index 2 containing no 
element of order 2W. Let v be an element of Y of order 2n, in which 
case Z J £ F — D (for example, v = yb\). One checks directly from the 
structure of Y that vx = v2n~*(EzEQD, that every element of F—D 
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is either an involution or of order 2n, and that every involution of 
Y—D is conjugate to y in F. But now using the extended form of 
Thompson's fusion lemma [30, §4], we see that either our assertion 
is valid or else V\ is conjugate in X to an involution of Y—D and hence 
to y from some such choice of v. 

We consider the latter possibility. Since fli£jE and E = Z(Y), it 
follows that Cx(y) contains a Sylow 2-subgroup Fi of X. Without loss 
we can assume that Y\ contains CY(y) = (y, E). Suppose first that 
Z(Fi)C(;y, E), in which case Z(Yi) = (y, e'), where e' = ei, e2t or e\e% 
(as Z( Fi) =:Z( Y) = E is a four group). But then by the structure of F, 
there exists an element of order 4 in F which normalizes, but does not 
centralize Z(Fi) . However, this is impossible as Nx(Z(Yi))/Cx(Z(Yi)) 
is of odd order. Thus Z(Yi)Ç£(y, E) and as Fi is of 2-rank 4 we con­
clude that A = (y, E, Z(Fi)) is elementary abelian of order 16. 

Finally set Xi = Cx(E). Then F is a Sylow 2-subgroup of X\ and 
so the preceding discussion applies to X\ as well as to X. But clearly 
the involution V\ above cannot be conjugate to y in X\ as ViÇzE 
CZ(Xi) . Hence X\ has a normal subgroup X0 of index 2 with Sylow 
2-subgroup D. However, as E C Z ( X 0 ) , the preceding lemma implies 
that X0 has a normal 2-complement and hence so does Xi~Cx(E). 
This implies that C=Cx((Ey y)) = C0(xo(y)CY(y). But CY(y) = <y, E) 
is of 2-rank 3 and consequently C has 2-rank 3. However, as (y, E) 
QA, we have A Ç C , contrary to the fact that A has 2-rank 4. 

As a first application of Lemma 8.5, we establish Lemma 4.5(ii). 

LEMMA 8.6. M has a normal subgroup of index 2 with Sylow 2-
subgroup R. 

PROOF. Indeed, setting M = M/(z), the structure of S is given in 
Lemma 8.1(viii). Hence if n^3, Lemma 8.5 implies that M has a 
normal subgroup of index 2 with Sylow 2-subgroup R, while if n = 2, 
the same conclusion holds by [30, Lemma 4.4]. In either case the 
lemma follows at once. 

We can now prove Theorem 4.3. 

PROPOSITION 8.7. If nè>3, then G has only one conjugacy class of 
involutions. 

PROOF. Assume false, in which case z is not conjugate to t or tu 
by Lemma 8.3. Hence by Lemma 8.1(ii), both t and tu are extremal in 
iS. Thus G contains an element g such that 

t" = tu and C8(t)° = C&(tu). 
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Since Qi(Cs(t)
r) = Öi(Cs(*«)') = (s), it follows that z* = zf whence t and 

tu are conjugate in M. This implies that M does not have a normal 
2-complement. 

Now set Ri*= (x-^lxÇ-S, xm£.S, m&M). Then Ri is a normal 
subgroup of S and is a Sylow 2-subgroup of AT by the focal subgroup 
theorem. But by the preceding paragraph, u~ (tu)~HÇzRi* Since 
(a2y &2, u) is the normal closure of u in S by Lemma 8.1(vi), it follows 
that (a2, &2, w ) Ç i ? i Ç 5 n M ' . In addition, SC\M'QR by the preceding 
lemma. 

Suppose now that w ^ 3 . Consider first the case that SP\Af' 
C(a , 6, «). We have that w inverts (a, b)C\M' and that 5 i = <a, b)C\M' 
2 (#2, #2). Since w ^ 3, the latter condition implies that S% is the direct 
product of two cyclic groups of order at least 4. Since SC\Mf is a 
Sylow 2-subgroup of M'f we conclude now by the remark following 
Proposition 5.3 that M' has a normal subgroup H of index 2 with 
Sylow 2-subgroup Si. But zESt and zEZ(H). Hence # H ( S I ) - CH(Si) 
by the structure of Si and so H has a normal 2-complement by Burn-
side's transfer theorem. Thus M does as well, which is not the case. 

Therefore Sr\M'C£{a, b, u). In particular, S f W V ( a 2 , b2, u). 
Since S/{a2, b2, u)Ç=Ds by Lemma 8.1(vi), it follows at once that 
Sr\M'D(a2, b2, u, ab) = {a2, ab, u). Since SHM'QR, the only possi­
bility is that S r W ' = (a2, ab, u, t) = R. 

Setting M=_M/(z), we have that i ^ Z V v X I V , n e 3 , is a Sylow 2-
subgroup of M'. Since i£ is maximal in S, ikf has no normal subgroup 
of index 4 and this implies that 02(M') = M'. Hence we know the 
structure of 3F' by the main result of [33]. In particular, if F is a 
subgroup of R with V=Qs * Qs, it follows that all involutions of 
V—(z) are conjugate in NM>(V) and hence in M. Since every involu­
tion of R — (z) lies in such a subgroup V, we see that all involutions of 
R — (z) are conjugate to Z\ in M. In particular, t~Z\. However, z^zi, 
by Lemma 8.2, and so z~t} contrary to assumption. 

Finally we establish Lemma 4.5(i). 

LEMMA 8.8. If G has only one conjugacy class of involutions, then all 
involutions of R — (z) are conjugate in CQ(Z). 

PROOF. We have t° = z\ for some g in G as G has only one conjugacy 
class of involutions. Let Si^>Cs(t) and S2^Cs(zi) = T be Sylow 2-
subgroups of Co{t) and CQ(ZI) respectively. We can clearly choose g 
so that Sf = S2. Since Qi(S')=Z, Oi(5î)^Oi(5î)^Z 2XZ 2 . Since 
zECaitynCsizi)', it follows that 0i(5J) = (t, z) and tii{S'2) = (zh z) = Z, 
whence (/, z)° = Z. Since (2i) = Z(S2), there exists s in S2 such that 
z* = Ziz. Hence either g or gs maps / to Z\ and 2 to 2. Thus t is conjugate 
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to Zi in M. Since also zÇzCsiy)' for y —tu, u and uab, the same argu­
ment applies in these cases to yield that y is conjugate to Zi in M. 
But Zu t} tu, u, and uab are representatives of the conjugacy classes 
of involutions of R — {z) in S and so the lemma holds. 
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