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BMO (bounded mean oscillation) is the Banach space of all func­
tions ƒ G L{oc(R

n) for which 

H/IIBMO = sup (-p—r- I \f(x) - a v g / | dx) < oo, 
Q \ I Q\ JQ / 

where the sup ranges over all cubes QQRn> and avQ ƒ is the mean of 
ƒ over Q. See [S]. For convenience, we identify ƒ and ƒ in BMO if 
ƒ— ƒ' is constant. 

THEOREM 1. BMO is the dual of the Hardy space Hl(Rn). The inner 
product is given by (ƒ, g)=:fRnf(x)g(x) dxfor fÇzBMO and g belonging 
to the dense sub space of C00 rapidly deer easing functions in H1. 

Here, we regard Hl as the space of fE:L1(Rn) whose Riesz trans­
forms Rj(f) are all in L1. See [7]. 

THEOREM 2. A function belongs to BMO if and only if it can be written 
in the form g0+^^! Rj(gj) with g0i gu • • • ,gnG^°°(^w). 

Note that the usual definition 

Rj(g) (*) = Hm f Kj(x - y)f(y) dy 
e-»0;M->«> J 6<|a;_ | / |<jif 

with Kj(y) =cyj/\y\ n + 1 need not make sense for all gÇzL00. (Consider 
g(x) =sgn(x) on the line.) Therefore, we define 

Rj(g)(x) = lim f [Kj(x - y) - Kj(-y)]g(y) dy, 

where K](y) =Kj(y) for | y | > 1 and K°}(y) = 0 for | y | g l . This makes 
sense for all gG-L00, and agrees with the usual definition up to an 
additive constant if g has compact support. See [3, p. 105]. 

The main idea in proving Theorems 1 and 2 is to study the Poisson 
integral of a function in BMO. Recall that any f unction ƒ satisfying 
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r ƒ (*) 
(*) , , ' dx<oo 

has a Poisson integral u(x9 t) = P.I.(f) defined on i?++1=i£wX(0, 00). 

THEOREM 3. A function f belongs to BMO if and only if (*) holds and 
ff\x-xo\<&; o<«61\ Vu(xt t) 12 dx dtSC8n for all x0E:Rn and ô > 0 . 

Theorems 1-3 and their proofs can be used to study Hl. For ex­
ample, 

THEOREM 4. Let F=(u0(x, t); ui(x, t)f • • • , un(x, t)) be an (n+1)-
tuple of harmonic functions on i£++1, satisfying the Cauchy-Riemann 
equations of [7]. If the nontangential maximal function uQ(x) 
= supia/|<*; t>o \uo(x — x',t)\ belongs to L1, then Fis in H1. 

Different techniques enable us to replace Ll and H1 by Lp and Hp> 
0<p<°o. This generalizes a one-dimensional result of D. Burkholder» 
R. Gundy, and M. Silverstein (see [ l ] and [2]). 

Further applications of Theorems 1-3 appear in [4] and [6]. [4] 
contains detailed proofs of the results stated here. 
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