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BMO (bounded mean oscillation) is the Banach space of all func-
tions f& Liy,(R") for which

[l /lsn0 = S%P(T'lé—l-fg | (%) — avq f| dx) < w,

where the sup ranges over all cubes QC R", and avg f is the mean of
f over Q. See [5]. For convenience, we identify f and f’ in BMO if
f—f"is constant.

THEOREM 1. BMO is the dual of the Hardy space H*(R"). The inner
product is given by (f, g) = [r* f(x)g(x) dx for fEBMO and g belonging
to the dense subspace of C* rapidly decreasing functions in H*.

Here, we regard H! as the space of f&EL'(R") whose Riesz trans-
forms R;(f) are all in L. See [7].

THEOREM 2. A function belongs to BMO if and only if it can be written
in the form go+ 3551 Ry(g5) with go, g1, -+ -, gnEL=(R").

Note that the usual definition

Ri(®(x) = lim Kz — 9)f() dy
e0i Moo o ccipyl<m
with K;(y) =cy;/ I y] »+1 need not make sense for all g&L». (Consider
g(x) =sgn(x) on the line.) Therefore, we define

RiQE) =lim | [Ki(w =) = Ki(=)]e0) d,
e e<|z—y
where Kj(y) = K;(y) for |y| >1 and K%(y) =0 for |y| £1. This makes
sense for all g& L=, and agrees with the usual definition up to an
additive constant if g has compact support. See [3, p. 105].
The main idea in proving Theorems 1 and 2 is to study the Poisson
integral of a function in BMO. Recall that any function f satisfying
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| /@) |
(%) fR” W dx <

has a Poisson integral «(x, t) =P.1.(f) defined on R} =R»X (0, »).

THEOREM 3. A function f belongs to BMO if and only if (x) kolds and
S S 1omz01<8; 0<t<s t| Vu(x, t)] 2 dx dt Z Co" for all xo&R* and 6> 0.

Theorems 1-3 and their proofs can be used to study H!. For ex-
ample,

THEOREM 4. Let F= (uo(x, 8); ur(x, t), - - -, ua(x, £)) be an (n+1)-
tuple of harmonic functions on R, satisfying the Cauchy-Riemann
equations of [7]. If the nonmtangential maximal function ug(x)
=SUP o 1<t £50 Iuo(x—x’, t)l belongs to L', then Fisin H'.

Different techniques enable us to replace L! and H! by L? and H»
0<p< . This generalizes a one-dimensional result of D. Burkholder:
R. Gundy, and M. Silverstein (see [1] and [2]).

Further applications of Theorems 1-3 appear in [4] and [6]. [4]
contains detailed proofs of the results stated here.
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